
Radboud University Nijmegen

Faculty of Science

Sentence Level Event Classification
in Newspaper Articles

Master’s Thesis

Author:
Simge Ekiz Başar

Supervisors:
Faegheh Hasibi

Ali Hürriyetoğlu

Second reader:
Djoerd Hiemstra

February, 2020

Abstract

Processing online news media content can provide a significant amount of information
and knowledge. Due to the high volume of online news, it is nearly impossible to process
and analyse these unstructured texts with human power. The human effort can be scaled
down by automatically reducing the large volume of text into relevant information pieces.
In this study, we focus on developing a method for automatically detecting sentences that
contain specific event information in news articles. We propose and make comparisons
between two text classification approaches: context-agnostic classification and context-
dependent classification. For both of the approaches, we employ two state-of-the-art
pre-trained contextual word embeddings, namely ELMo and BERT. We observe that
the BERT-based context-agnostic neural model outperform baseline approaches and also
other models, achieving 82.2% F1 score.

i

Contents

1 Introduction 1
1.1 Objectives . 1

2 Related Work 3
2.1 Text Classification . 3
2.2 Classical Machine Learning . 5

2.2.1 Decision Tree . 5
2.2.2 Random Forest . 6
2.2.3 Support Vector Machines . 7

2.3 Artificial Neural Networks . 8
2.3.1 Non-linear Activation Functions 10
2.3.2 Loss . 10
2.3.3 Weight Optimization . 11
2.3.4 Regularization . 12

2.4 Text Representations . 13
2.4.1 Bag-of-Words . 13
2.4.2 Word Embeddings . 14

3 Approaches 17
3.1 Context-agnostic Event Classification . 17

3.1.1 Word Embedding Model Integration 18
3.1.2 Word to Sentence Encodings . 19
3.1.3 Label Predictions . 20
3.1.4 Other Network Configurations 21
3.1.5 Baselines . 21

3.2 Context-dependent Event Classification 22
3.2.1 Sequencing Strategies . 23
3.2.2 Label Predictions . 25

4 Evaluation 27
4.1 Experimental Setup . 27

4.1.1 Dataset . 27
4.1.2 Evaluation Metrics . 30

4.2 Results . 31
4.2.1 Context-agnostic Classification Experiments 31
4.2.2 Context-dependent Classification Experiments 34

5 Conclusions 36

ii

Chapter 1

Introduction

The rise of the web rapidly changed the way of communication and how the informa-
tion is created, spread and used. It caused an exponential increase in digital data.
Unquestionably, processing such data provides a significant amount of information and
knowledge. However, most of the information on the web is written in natural lan-
guages, and thus, stored as unstructured text. Due to the high volume and nature of
the unstructured text, it is nearly impossible to process and analyse these unstructured
texts with human power. As a result, automatically processing and analysis of informa-
tion from unstructured texts is of great importance and has become a popular research
area [48, 13]. The recent developments in text mining and artificial intelligence made
this automation applicable to any domain.

The goal of this research is identifying the sentences that contain specific information
in news articles. Reducing the large volume of text into relevant information pieces can
scale down the human effort during further analysis. Further automation of manual
analysis can include creating a structured database, which is called information extrac-
tion [40]. Processing relevant sentences exclusively can reduce the false positives in the
downstream information extraction task for event detection, which would enhance the
reliability of the event database.

This thesis is part of a multidisciplinary research work package that aims to help
social scientists understand global problems better by monitoring online media sources
and creating a sociopolitical event database. Hence, in this study, our aim is automati-
cally detecting the sentences that contain information about protest-related events. We
are willing to answer the question “How can we identify event-related sentences?”. We
approach the issue as a text classification problem, where our goal is to assign each
sentence a predefined category automatically.

1.1 Objectives

Context-agnostic sentence classification with contextual word embeddings.

Our first objective in this study is making use of contextual word embeddings to improve
performance of sentence level event classification. Specifically, our first research question
is “How can we incorporate pre-trained embeddings to perform sentence classification?”.

With the promising developments in pre-trained word embeddings, it is worth to
explore current state-of-the-art word embeddings for our sentence classification task.
Recently, contextual word embeddings have shown potential improvements for various
NLP tasks by encoding word, based on their context.

To answer this research question, we propose a method that incorporates the latest

1

state-of-the-art contextual word embeddings, namely ELMo [32] and BERT [10], to
an Artificial Neural Network (ANN) model. We compare our method with TF-IDF
based representation of sentences and use various classical machine learning algorithms,
such as Decision Trees, Random Forests, and Support Vector Machines. We show that
ANN architecture with BERT embedding outperforms the other models. Finally, we
conclude that the contextual word embeddings improves the performance of the sentence
classification in a context-agnostic setup.

Context-dependent sentence classification.

Our second objective is taking the preceding and the following information of a sentence
into account to understand the meaning of a sentence. We hypothesize that it is essential
to process the context when we classify sentences. Thus, we are willing to answer the
question “Does taking the context of a sentence into account improves sentence level
event classification?”.

To answer this question, we propose a Recurrent Neural Network (RNN) architecture
that can classify sequences of sentences that are encoded with contextual word embed-
ding models. We made comparisons to the aforementioned context-agnostic methods.
We observed that the context-dependent network with ELMo embeddings performs as
good as ELMo embeddings in the context-agnostic setup. However, the context-agnostic
network with BERT embeddings is still the best performing approach. We conclude that
the context-dependent approach is still worth to explore in further studies, although it
does not immediately improve the classification performance.

Outline

The rest of this thesis is organized as follows. In Chapter 2, we cover previous work that
has been done for text classification tasks and briefly describe the methods we used and
some underlying concepts. In Chapter 3, we mention the usage of these methods in our
text classification use case. We present approaches and how we opt for our decisions.
In Chapter 4, we describe the dataset, discuss the evaluation metrics and present our
results. In Chapter 5, we draw conclusions from our work and answer the research
questions and discuss further improvements.

2

Chapter 2

Related Work

2.1 Text Classification

Text classification is one of the fundamental tasks of Natural Language Processing
(NLP). Ultimately, we want computers to analyse an input text and extract an overall
meaning or a specific knowledge reliably. Text classification tasks partly achieve this by
categorising and sorting textual data based on the information in its content. In a broad
sense, text classification is the process of automatically assigning a predefined class to
a piece of natural language text [39].

Automatically classifying (also referred to as labeling or categorising) text can be
used in a broad range of applications, and it is useful in almost any domain that inter-
acts with textual data. For instance, search engines use text classification approach to
retrieve information relevant to the topics [53]. Companies can monitor business trends
from various textual sources which help them to make reliable business decisions. Online
sellers can see the overall user opinion by categorising product reviews as positive or
negative with sentiment analysis. By analysing newspapers or social media, authorised
people can take precautions for critical situations (such as natural disasters) or take
actions in the time of need.

Early methods of text classification were based on manually programming linguistic
rules. This technique, known as knowledge engineering, was the dominant approach
in its era [28]. However, it requires extensive analysis, comprehensive testing and in-
depth expert knowledge for each domain [41]. Hand-crafting, maintaining and updating
the rules are time-taking and complicated, as the rules can interfere with each other.
The difficulties in customisation and generalisation of these algorithms also harm their
scalability [51].

More recently, machine learning-based text classification approaches have become
an adequate alternative solution, instead of relying on predefined rules [41]. Machine
learning models can learn from past observations and capture insights from data. Thus,
given some amount of observed examples, a machine learning algorithm learns asso-
ciations between its input texts and its output by itself [26]. This ability shifted the
engineering effort of hand-crafting custom rules (classifiers) to teaching statistical learn-
ing algorithms by feeding them example instances [41].

A common approach to machine learning-based text classification is generating a
language model by using the features extracted from the text itself. We can divide
the process of a text classifier learning into two steps [36]. The first step is feature
extraction, where we select the features of the text that will be used to generate a
numerical representation of the text. The features can vary depending on the classifi-
cation task, the subject domain, or the methodology of the algorithm. The feature list

3

can be a bag-of-words (e.g., using TF-IDF) or distributed representations of words and
sentences. The second step is the learning, where a statistical algorithm is trained to
assign labels to text by automatically analysing the numerical representations and the
given labels. The machine learning algorithms at the core of the learning are essentially
mathematical formulas, and they can be used regardless of the subject domain. Some
of the well-known machine learning algorithms such as decision trees, random forests,
support vector machines, and artificial neural networks are explained in Sections 2.2
and 2.3.

Classification of text can be divided into four different levels; document, paragraph,
sentence, and sub-sentence levels [20]. The most well-known version of text classification
and the first application that comes to mind is classifying entire documents such as
newspapers and web pages. Despite being widely studied, document classification still
preserves its challenges due to the unstructured nature of the text. Thus, it is still an
open research area. Recent studies incorporate artificial neural networks and features
extracted from both text and images attached to the documents [3].

Sentence classification and sub-sentence classification tasks are studied under the
short-text classification as their contents are shorter than a regular document. Analysing
short text came under the spotlight with the rise of the Web 2.0 that introduced an
interactive internet model where people participate by sharing information in forms of
small texts such as comments, reviews, and tweets [36]. Due to the amount of content
that it can contain, sentences are also accepted as short texts.

Processing short text introduces new challenges to text classification. Especially
feature extraction is challenging because a short text is low on content. First, the lack
of content causes the feature sets to become too sparse. The feature sparsity reduces the
performance of the classical machine learning algorithms [42]. Second, the lack of content
makes it harder to discover powerful linguistic features such as co-occurred words [24].
Thus, the similarity algorithms based on such features are not performing well with
short texts. Processing Web 2.0 short text is challenging due to the grammatical errors
and the dynamic nature of the Internet [24]. However, these are not the cases with
processing the sentences in our use case, since the sentences are usually parts of well-
written documents such as newspapers.

To overcome the challenges in feature extraction, researchers have proposed ways
to enhance the feature set by using external knowledge. A study proposed a method
that made use of Latent Dirichlet Allocation (LDA) to create a feature thesaurus [46],
and another has shown improvements by adding user-defined categories and hidden
topics in Wikipedia articles into the knowledge base [33]. Another study used domain-
specific features and author profiling to increase the performance of a tweet classification
algorithm [44]. More recently, developments in artificial neural network-based word
embedding methods have shown success on semantic encoding. With word embeddings,
the granular data gain the ability to hold more information implicitly. As a result, the
recent studies used the word embeddings that are generated from large datasets as their
features. It is shown that encoding short text with these word embeddings and using
them as features for artificial neural networks achieves state-of-the-art performance [47,
19, 50].

To our knowledge, task-wise, the closest study to ours is [29]. Naughton et al. have
approached the event detection task as a binary classification of the sentences. They used
support vector machines algorithm to train their model based on a feature set consisting
of specific linguistic features such as the terms, part-of-speech and noun chunks. Given
that the study is from 2010, it could not involve any of the recent classification techniques
we present in our study. Thus, we can see our study as a methodological update over
the work has been done on sentence level event classification.

Method-wise, we see that the closest study to ours is [23]. This method depends

4

on the idea that the short texts are next to each other in a broader context, similar
to our context-dependent approach. The method is based on Recurrent Neural Net-
works(RNN) that takes a short text and its context into account. Their architecture
starts with feeding word embeddings into a neural network layer and applying max-
pooling to encode the sentences individually. As of word embeddings, their choice was
word2vec [25] model pre-trained on Google News and GloVe[31] model pre-trained on
Twitter stream. Both of the word embedding models are well-known feature-based em-
beddings, whereas we use the recently developed embeddings that are either contextual
or fine-tunable (see Section 2.4). They have also introduced a hyperparameter, named
history size, that sets the length of the sequences, similar to our window-width parame-
ter used in the sliding window strategy. As a difference, we also introduce a model that
uses the full article as context.

2.2 Classical Machine Learning

In this section, we explain some of the supervised classical machine learning algorithms
that are formerly known as the state-of-the-art techniques for text classification tasks.
These approaches are used in many applications and research studies, including but
not limited to short text topic classification, semantic text analysis, and multimodal
classification [2]. In recent studies, we see that these algorithms are outperformed by
artificial neural network techniques, even though the interpretability of the results is
sacrificed [20]. Nowadays, classical machine learning algorithms are used by many
researchers in their studies as a baseline system to understand the capacity of their
proposed approaches [49].

2.2.1 Decision Tree

Decision Tree (DT) algorithm discovers a set of rules by analysing a labeled dataset.
Then, the algorithm uses the rules to predict unseen data. These discovered rules are
sorted to form a tree where each node represents a decision point, and each leaf contains
an output class (see Figure 2.1). In the context of machine learning, the decision trees
are introduced with the Iterative Dichotomiser 3 (ID3) algorithm [35], which works with
categorical data used in classification tasks. Then, ID3 is followed by successors such as
C4.5 and CART.

Figure 2.1: A visualization of decision tree algorithm. Each node is a decision point and
each leaf represents an outcome.

There are various implementations of DT for different conditions and tasks. Never-
theless, they all follow the same tree metaphor. At the training process, the algorithm
calculates the information gain for each feature. Then it selects the feature with the
most significant gain as the root (first node) of the tree. Next, it continues to form the

5

tree by partitioning the data at each selected feature. This process is repeated for each
branch. When a subset of examples of the same class is formed, the tree places the class
as the leaf (final node) of that branch. It can also stop when there are no more features
to split even though the subset contains a variety of classes. In that case, the algorithm
again places a tree, but this time the most common class in the subset is set as the leaf’s
value.

In some variants of DT, another splitting criteria called Gini impurity is calculated
in order to decide on the node to split, instead of information gain. Gini impurity is a
calculation of misclassification chance when a label is randomly assigned based on the
distribution of the labels in the set. There is not a statistically significant difference in
the results of using information gain and Gini impurity [6]. However, Gini impurity has
less computational complexity since it avoids computing a logarithmic function, unlike
the information gain.

At the prediction, when a new data point with a new feature set is introduced,
the algorithm starts from the feature node at the top of the tree. At each node, the
algorithm decides whether it should continue going down the tree from the left or the
right set of rules, based on the value in the corresponding feature point in the data.
Finally, the algorithm stops when it reaches a leaf and returns the value of the leaf as
the outcome.

Because of its straightforward implementation, it is possible to visualize the rules
discovered by DT algorithms and interpret the results by understanding the reasons
behind them. Contrarily, as a disadvantage of this simplicity, DT algorithms are not
successful at complex tasks that require large vector spaces. It has been shown that
having an imbalanced dataset or having too many nodes on a decision tree can cause
overfitting [37]. Overfitting is a generalization problem where the model shows high
performance on the training dataset, while it is not effective in processing the unseen
test dataset.

2.2.2 Random Forest

Random Forests (RF) algorithm advances over the same tree metaphor used in the Deci-
sion Tree algorithms. It operates as an ensemble method that consists of a large number
of individual decision tree models. Each decision tree model produces a classification
result. In the end, the class returned by the majority of the Decision Tree models be-
comes the prediction of the Random Forest model [5]. This process is called majority
voting and demonstrated in Figure 2.2.

At the training time, the Random Forest algorithm uses bootstrap aggregating (a.k.a
bagging) to distribute the instances to the Decision Tree models. For each Decision
Tree model, it randomly samples a number of instances from the entire dataset without
replacement. As a result, there are no pairs of Decision Tree models that take the
same subset of instances. Owing to this, we are forcing the trees to have different
node splits, different rules and different decision-making processes. Random Forest
algorithm also distributes features to the Decision Tree models by using random subspace
method. To train each Decision Tree model, it randomly samples a subset of features
with replacement, instead of giving the entire feature set [4]. Thus, the models may
have overlapping feature sets, although there is a low probability that they will be the
same when a sufficient number of features are given. This process of feature sampling
forces Decision Tree models to have different decision-making processes further.

As a result of the bootstrap aggregating and random subspace method, the correla-
tion between the Decision Tree models is minimized. Training each model on a different
set of data and with a different set of features reduces the risk of bias towards a partic-
ular instance type or a subset of features, and eventually reducing the risk of overfitting

6

for the Random Forest model. Even though a Decision Tree model in the ensemble may
overfit on a single data point by itself, it is corrected by the wisdom of the crowd during
the majority voting process. This case makes the Random Forest algorithm produce
fewer errors when compared to individual Decision Tree algorithms.

Figure 2.2: A visualization of Random Forest algorithm.

2.2.3 Support Vector Machines

Support Vector Machines (SVM) algorithm takes the feature set of each instance as a
vector and places it into a vector space. At the training time, given a dataset with
labeled instances, SVM forms hyperplanes to separate the data based on their classes.
The aim of the SVM algorithm is calculating the optimal hyperplane that maximizes
the margin between the classes [9]. At the prediction, the new instances are placed
into the same vector space, and their labels are decided based on their position to the
hyperplane.

Figure 2.3 visualizes how labeled instances are separated with a single hyperplane
into their respective groups by the SVM algorithm. The figure shows a simplified version
by taking each instance as a 2-dimensional point. In a real application, however, the data
is represented with long feature vectors, and every feature of the vector adds another
dimension. Primarily the text classification tasks require having high dimensional vector
spaces in order to have useful representations.

Figure 2.3: Hyperplanes are separating datasets. In this visualization, each instance has
two features, and so, appearing as points on the coordinate system. The graph on the
left shows a linearly separable dataset, and the one on the right shows a non-linearly
separable dataset.

Initially, the SVM algorithm separates the data with a linear hyperplane. However,
every dataset has different characteristics, and so, different feature sets. Different feature

7

sets may require different shapes of hyperplanes. So, it is also likely to see datasets that
cannot be linearly separated. Each object in a non-linearly separable vector space is
transformed into a higher dimension, where the linear separation of the classes is possible
(shown in Figure 2.4) [15]. This transformation is known as the kernel trick and done
with the help of specific mathematical formulas named kernel functions.

Figure 2.4: Kernel trick representation; transformation of the feature vector space into
a higher dimension with the help of the kernels to be able make it linearly separable.

Given that φ is the feature mapping, Xi is the support vector, and Xj is a multi-
dimensional real vector, a generalized definition of the kernel function can be written
as:

K(Xi, Xj) = φ(Xi) · φ(Xj) (2.1)

In order to make an optimal separation, different kernel methods are introduced.
Some of the well-known types of kernels are linear, polynomial, radial basis function
(RBF) and sigmoid funcitons [34]. Given that C and γ are constant parameters, and d
is the degree, the equations of these kernels respectively:

Klinear(Xi, Xj) = Xi ·Xj (2.2)

Kpolynomial(Xi, Xj) = (γ ·Xi ·Xj + C)d (2.3)

KRBF (Xi, Xj) = exp(γ | Xi −Xj |2) (2.4)

Ksigmoid(Xi, Xj) = tanh(Xi ·Xj + C)d (2.5)

2.3 Artificial Neural Networks

Artificial Neural Networks (ANN) are computational graphs designed to model the way
the human brain works. They consist of layers of nodes that hold a real number. The
first layer of an ANN is referred to as the input layer, and the last layer is called the
output layer. The layers between them are called hidden layers. When a neural network
contains a single hidden layer, it is referred to as a shallow network. If there is more
than one hidden layer, it is considered a deep neural network.

The nodes are assumed to be the neurons in the human brain. Just like neurons,
nodes of a layer are connected to the nodes in the previous and the following layers.
These connections in the computational graph are called edges. In an ANN, the edges
are weighted and usually just referred to as weights.

8

Figure 2.5: A visualization of a “deep” artificial neural network. The circles are nodes,
and the connection lines are weights. The blue node value is calculated by using the
orange colored weights and the connected nodes.

Given an input, the network moves forward by calculating the values of the nodes
layer-by-layer. The node values of the input layer are equal to the given input. At each
following node, the value is calculated by having the weighted sum of the node values in
the previous layer. For example, in Figure 2.5, the value of the blue node is calculated
by multiplying each previous node with the corresponding weight and summing them all
together. Equation 2.6 shows the node value calculation where n is the number of nodes
in the previous layer, xi is a previous node value, and wi is a weight. After each node
is calculated in the network, the node values of the output layer give us the prediction.
This process is called ”inference”.

z =

n∑
i=1

xi · wi (2.6)

To train a neural network, first, the weights are initialized randomly. The network
immediately starts predicting by using these random weights, as it was already trained.
These predictions are compared to the given correct labels to calculate an error rate. A
loss function does the error calculation. This is followed by the backpropagation process,
where the network determines how much each weight contributes to making the errors.
Then, the weights are adjusted in a way to minimize errors in the next run. The weights
that contribute more to the errors are changed more. Therefore, the weights are adjusted
to reduce the loss. After the adjustments, the neural network moves forward to make
new predictions. This process is iterated, and at each iteration, the loss is minimized.

The idea of artificial neural networks has been around since the invention of com-
puters. However, they started to outperform the other machine learning methods in
the last ten years. Their true potential discovered first on processing the images (such
as [21]). However, similar techniques started to demonstrate the same success in text
processing, as well.

Hereunder, we explain the main components of a neural network in detail, including
activation, loss, weight optimization, and regularization.

9

2.3.1 Non-linear Activation Functions

In the previous section, we explained how the node values are calculated during the
inference process. In Eq. 2.6, we display a linear function as a starting point. If we
only use linear activation functions, the output layer will be a linear function of the
input layer. In such a case, regardless of how many hidden layers we use, the neural
network will act as a single layer. Therefore, to escape the linearity, non-linear activation
functions are introduced. The activation functions take the linear weight sum as input
and output a modified version. Although there are many activation functions (such as
sigmoid or tanh), the general equation can be written as shown in Eq. 2.7 given that σ
is the activation function.

z = σ(

n∑
i=1

xi · wi) (2.7)

One commonly used activation function is the Rectified Linear Unit (ReLU) [27].
ReLU is a simple yet effective activation function. If the input is greater than zero,
ReLU returns the original input. For any input smaller than 0, ReLU returns 0. It can
be defined as the following:

σrelu = max(0, x) (2.8)

Figure 2.6: Plot of the ReLU function.

Thus, this makes ReLU, partially linear. It acts linearly for the values larger than
zero and non-linear for the values smaller than zero (see Figure 2.6). The linearity makes
the training faster compared to other functions such as the exponential ones. Setting
the values with negative inputs to zero leads to sparsity [11]. Besides speeding up the
processing, the sparsity also produces models with less noise since only specific nodes
are activated.

2.3.2 Loss

As also mentioned in Section 2.3, a loss value is calculated at the end of each iteration.
The idea of training a neural network is searching for the ideal configuration of the
weights. The loss represents the rate of the errors done by a neural network with the
current weights. When two configurations are compared, the one generates the smaller
loss is accepted as better, because it makes fewer errors.

Various loss functions are useful on different types of neural networks based on the
task and the data at hand. Cross-entropy [12] is one of the most common loss functions
that is used for classification tasks. In a binary classification setup, there are two possible

10

outcomes to be predicted. Considering the classes A and B; the log probabilities of each
instance being A and B are calculated. Then, the sum of the log probabilities across
the dataset is divided by the total number of instances. Given that yA and yB are
predictions, P (yA) and P (yB) are the probabilities that the instances being A or B, and
N is the number of points in the dataset, Equation 2.9 defines the cross-entropy loss
function.

L = − 1

N

N∑
i=1

yA,ilog(P (yA,i)) · yB,ilog(P (yB,i))) (2.9)

2.3.3 Weight Optimization

Neural networks are always in search of the optimal weight configuration that gives the
minimum loss. Optimization algorithms (or optimizers) are responsible for updating
the weights to accomplish this. The weight updates are calculated based on the initial
weight, the loss, and the learning rate. The learning rate is a hyperparameter that gives
us some control over how much the neural network is adjusting the weights.

Hereunder, we describe the most common three weight optimization methods; Gra-
dient Descent, Root Mean Square Propagation, and Adaptive Moment Estimation.

Gradient Descent

The most basic optimizer, Gradient Descent [38] is the starting idea of many other
optimization algorithms. We, first, define the gradient of the loss function L with respect
to the weight w as:

g = 5wL(w) (2.10)

Gradient Descent updates a weight w, by subtracting the gradient g multiplied by
the learning rate η.

w ← w − η · g (2.11)

Root Mean Square Propagation

A commonly used optimization algorithm is the Root Mean Square Propagation (RM-
Sprop) [45]. It adjusts the learning rate for each weight by using the gradient of the
previous updates. At each time step t, the exponential average of the past squared gra-
dient is calculated until the last update. Then it is added to the square of the current
gradient (see Eq. 2.12). This technique gives us the exponential average of the squared
gradient calculated at the current step t.

Here we also introduce another hyperparameter represented as γ. We multiply the
exponential average at the time t − 1 with γ, and the square of the current gradient
with (1−γ). This approach allows weighing the recent gradients more than the previous
ones. Thus the equation of exponential average of the square of the gradient becomes:

E[g2]t = γ · E[g2]t−1 + (1− γ) · g2t (2.12)

RMSprop adjusts the learning rate by dividing it into the square root of the expo-
nential average of the current gradient. A constant ε is also added to the exponential

11

average to avoid a division by zero. When we place this adjusted learning rate cal-
culation into the Gradient Descent update function, we obtain the RMSprop update
function (Eq. 2.13).

wt+1 ← wt −
η√

E[g2]t + ε
· gt (2.13)

Adaptive Moment Estimation

Adaptive Moment Estimation (Adam) [18] is another optimization algorithm that com-
putes an adaptive learning rate for each weight. Similar to RMSprop, Adam calculates
the exponential average of the past squared gradients vt as:

vt = β1 · vt−1 + (1− β1) · g2t (2.14)

As an addition, Adam also calculates the exponential average of the past gradients
mt as:

mt = β2 ·mt−1 + (1− β2) · gt (2.15)

Both of the vt and mt calculations have the hyperparameters, β1 and β2, that works
similar to the hyperparameter γ used in RMSprop. The vt and mt are initialized as
vectors of zero. It is observed that they are biased towards zero [18]. This bias is
corrected by:

v′t =
vt

1− β1
(2.16)

m′t =
mt

1− β2
(2.17)

Finally, the Gradient Descent update function is modified with using bias-corrected
v′t and m′t to obtain the Adam update function calculated as:

wt+1 ← wt −
η√

v′t + E
·m′t (2.18)

2.3.4 Regularization

The weights of a neural network are optimized during the training operation. It is com-
mon to observe that the weights are converged only for the dataset used for training the
neural network, meaning that the model overfits. Regularization methods are developed
to prevent neural networks from overfitting their weights on the training dataset.

Regularizers add a regularization term R(w), to the loss calculation. The regulariza-
tion term is chosen to penalize the complexity of the neural network. The importance
of the regularization is controlled by adding a hyperparameter λ. Therefore, the loss is
increased by the regularization term on the weight and λ. Given that L(w) is the loss
with respect to the weight w, the loss calculation is updated as in equation 2.19.

L̂(w) = L(w) + λR(w) (2.19)

12

Regularizers are forcing the weights towards zero. This way, the values in the weight
matrix are reduced. The input values of the activation function become smaller. Thus,
the effect of the activation function is lessened. The complexity of the neural network
is simplified, which in turn reduces the overfitting [22].

There are two commonly used regularization terms, L1 and L2. L1 (or lasso) reg-
ularization is calculated as shown in Equation 2.20. L1 regularization achieves the
complexity reduction by moving weights to zero and creating sparsity in the weight
matrix.

RL1 =

n∑
i=0

|w| (2.20)

L2 regularization (or weight decay) penalizes the network by the sum of the squares
of all the weights (see Eq. 2.21). Thus, L2 regularization never makes the weights zero
and provides a non-sparse solution.

RL2 =

n∑
i=0

|w2| (2.21)

Here in this study, we empirically decided to use L2 regularization with λ = 0.001
in the fully connected layers in the neural networks.

2.4 Text Representations

The mathematics behind machine learning and neural networks is based on processing
numerical values in vectors or matrices. It is crucial to have a method that transforms
text into a numerical representation. This method allows computers to process unstruc-
tured text. Effective feature extraction is the key to robust and high performing au-
tomated classification systems. Researchers have suggested different feature extraction
techniques to encode text. Hereunder, we mention both classical and recent encoding
methods that are used in feature extraction for unstructured text.

2.4.1 Bag-of-Words

Bag-of-Words (BoW) representation method is one of the most widely used ways to
represent the text as numerical vectors [52]. The idea is structuring a vocabulary of the
unique words that exist in the corpus. Then, each text (such as a sentence) is encoded
as a vector with the length of this vocabulary. In this vector, each word carries a weight.
At its most basic form, this weight can be a binary value which indicates the presence
or absence of the word. Another weight calculation can be using the term frequency
that counts the number of times a word appears in the text.

When the term frequencies are used as weights, some frequently used words dominate
the representations that might not provide distinctive information. To avoid this dom-
ination, Term Frequency - Inverse Document Frequency (TF-IDF) approach has been
proposed [43]. TF-IDF calculation multiplies the term frequency with the log inverse
document frequency of that word (Eq. 2.22). This penalizes the words that are frequent
in the corpus. With this score, it is possible to give larger weights to the words that are
distinct in the text.

wi,j = tfi,j · log(
N

dfi
) (2.22)

13

The words with too high or too low document frequencies can be seen as outliers.
The words with too high document frequency occur in almost all of the documents.
Using them to encode a document does not help to differentiate between the instances.
This makes them unimportant for the classification tasks. Likewise, the words with
too low document frequency are almost unique to the given text. Using them in the
encodings may create an unwanted bias that shifts towards those words instead of the
collective meaning. Also, in practice, reducing the dimensionality of the vectors is bene-
ficial to reduce the computational complexity. Thus, the maximum document frequency
parameter is set to prevent adding too frequent words to the BoW vocabulary used to
encode the documents. The minimum document frequency is set to prevent adding the
words that do not frequently occur in different documents to the vocabulary.

Although BoW+TF-IDF methods show promising results, they disregard the word
order, context and grammar. One solution for including word order and context is to
create a BoW structure with n-grams words instead of taking each word separately.
With n-gram representations, BoW can capture more information compared to unigram
approaches. Although word order and context are preserved, syntactic representations
are unable to capture the word meanings, and so, cannot encode word similarity. An-
other fundamental problem with BoW is the sparsity. BoW representations yield high-
dimensional sparse vectors. Thus, there is a pressure for vocabulary decrease.

2.4.2 Word Embeddings

Word embeddings are dense high-dimensional vectors of words, capable of capturing
semantics. There have been various methods proposed to generate word embeddings
over the past years. They are all generated by neural networks trained over a very large
corpus. The recent methods managed to encode the relationships in text and semantic
similarities between words, unlike BoW approaches.

Word2Vec & GloVe

One of the most well-known approaches is word2vec embeddings, which has used skip-
grams and continuous bag-of-words (CBOW) to encode each word [25]. CBOW and
skip-gram methods calculate the relations between a word and its context by measuring
the distances between the word itself and its surrounding words. In this method, a
shallow neural network is trained to perform a language modeling task. The neural
network encodes the words together with their given local contexts. After the training,
by taking the weight matrix of the hidden layer in this shallow network, we obtain
the vector representations of the words. Finally, these representations can be used to
compute the similarities (or relations) between the words.

A similar approach is employed by the model known as GloVe embeddings. Word2vec
and GloVe approaches have the same mathematical base other than minor hyperparam-
eters [31]. A major difference is that GloVe builds a global co-occurrence matrix of the
words.

Embeddings from Language Models

Building on the idea of aforementioned models, a contextualized word embedding model
named Embeddings from Language Models (ELMo) recently developed and showed
promising performance on benchmarks [32]. Contextualized word embeddings also fol-
low the idea of training a neural network language model approach. As a difference, they
do it with complex deep neural networks that employed bidirectional language modeling
(biLM).

14

ELMo is trained on a prediction task, where the model encodes sequences while
learning to predict the next word. At the training of the ELMo model, for a given input
sequence, first, a vector representation for each word is obtained by Convolutional Neural
Networks (CNN) layers. Then, the sequence of these vectors is passed to a group of
forward Long Short-Term Memory (LSTM) layers. Each LSTM layer yields a contextual
representation of the words. The output of the top layer LSTM is given to a softmax
layer to have a prediction on the next word. Another group of LSTM layers encodes
the sequence in the same way but in the reverse order. Thus the bidirectional language
model is a concatenation of these individual forward and backward LSTM layers that
jointly maximizes the log-likelihood. Given that, θx is the initial word representation,
the θs is the output of the softmax layer, and N is the number of words in the sequence,
the formulation of the biLM is:

N∑
k=1

(log p(tk|t1, . . . , tk−1; θx, ~θLSTM , θs) + (log p(tk|tk+1, . . . , tN ; θx, ~θLSTM , θs) (2.23)

The goal of a trained word2vec and GloVe models is to create a universal word
representations matrix that carries the most frequent meaning of the words. Thus we
can look for the representation of a word from that matrix. As a major difference, once
a contextualized word embedding model is trained, it generates representations over the
entire sequences instead of individual words. contextualized word embeddings manage to
produce representations that implicitly carry the meaning of the word in that particular
context. For example, a contextualized word embedding would return different vector
representations for the mentions of the word “bank” in “bank account” and “bank of the
river”1. Hence, it prevents confusion with potentially ambiguous words.

Although the ELMo model is not considered fine-tunable as much as a transfer
learning approach, it can be highly optimized to different downstream NLP tasks and
different domains. This is done by collapsing all layers into a single vector and weighing
the bidirectional language model based on the task. Given that γtask is a weight that
allows the downstream NLP model to optimize the ELMo vector and stask is a softmax-
normalized vector, the formulation of the optimization is:

ELMOtask
k = γtask

L∑
j

staskj hLM
k,j (2.24)

Bidirectional Encoder Representations from Transformers

Another method that recently set the state-of-the-art in the word encoding field is
another contextualized word embedding model named Bidirectional Encoder Represen-
tations from Transformers (BERT) [10]. BERT is built upon the other contextualized
word embedding models, including ELMo and has the same goals and behaviours.

BERT introduces a model that applies the bidirectional encoding at a level as deep as
the hidden layers. Bidirectionally training a language model on the next word prediction
task is not trivial. In the bidirectional setup, a word is predicted by reading all of the
surrounding words from left to right and right to left. The language model already knows
about the entire sequence when we attempt to predict the next word. Consequently,
the model knows the answer without “learning” anything. This problem is known as
the word “seeing itself” in the context of another word. BERT approach overcomes this

1Example is taken from https://ai.googleblog.com/2018/11/open-sourcing-bert-state-of-art-
pre.html. Accessed on 9 January 2020

15

https://ai.googleblog.com/2018/11/open-sourcing-bert-state-of-art-pre.html
https://ai.googleblog.com/2018/11/open-sourcing-bert-state-of-art-pre.html

issue by using masked language modeling (MLM). In MLM technique, 15% of the words
in a sequence is randomly replaced with a placeholder token, [MASK], and only these
placeholders are predicted. Thus, during the training, BERT model does not “see” all
the words at once. At the final step, the vectors from the final hidden layer are given
to an output layer with softmax activation.

On top of next word prediction training, BERT is also trained on next sentence
prediction to learn the relationship between sentences. During the training, BERT model
is given pairs of sentences labeled as ‘IsNext’ and ‘NotNext’. Thus the BERT encoders
are trained beyond the local context and also encodes information from surrounding
sentences.

Finally, BERT is designed to be a transfer learning model. Thus, all the parameters
of pre-trained BERT models can be fine-tuned end-to-end to model a downstream NLP
task.

Pre-trained Language Models

To truly benefit from the power of the neural word embedding algorithms, the model
needs to be trained on a large collection of textual data. Even though the word embed-
ding algorithms are unsupervised learning techniques, processing such amounts of data
is time taking and requires powerful hardware. As this is a commonly known issue in
the research area, it is possible to find word embedding models shared publicly often
by the developers of the algorithms. Such shared models are trained on a large set of
textual data from multiple domains, and so, they aim to provide a general encoding of
natural language text regardless of the downstream NLP task or the specific domain.

16

Chapter 3

Approaches

In this chapter, we define two methodologies that perform sentence classification. In
the first part, we introduce the context-agnostic approach, and in the second part, we
describe the context-dependent approach. Likewise, we explain how do we configure
specific algorithms to fit our purposes.

3.1 Context-agnostic Event Classification

In a news article, many sentences form a single integrated story. Since our task is classi-
fying sentences, we define the context of a sentence as the other sentences surrounding it.
In this section, we follow the context-agnostic approach. The context-agnostic approach
aims to classify a given input sentence by only using its properties. Thus, the other
context surrounding the input is not taken into account. In other words, we process
each sentence independent from its context. Our general propose approach to sentence
classification is based on artificial neural networks. Thus, in this section, we explore
creating neural network models using only the words or characters of the sentence.

Figure 3.1 illustrates an overview of the neural network architecture we propose for
context-agnostic approach. As can be seen in the figure, the input of the network is a
single sentence. Then, the sentence is given to a word embedding model as a whole to
obtain the word encodings for each word used in its content. We use two different word
embedding models, namely ELMo and BERT, implemented in separate neural networks.
In the figure, the graph on the left shows a network with ELMo word embeddings and
the other shows a network with BERT word embeddings. The two embedding models
are integrated with different strategies which are explained in Section 3.1.1.

The word embedding layers return a vector for each word in the content of the
sentence. These vectors are given to a pooling layer to reduce the dimensions before
using the classification models, which is explained in Section 3.1.2. Thus, we obtain a
single vector representation for each input sentence. Finally, the sentence encoding is fed
into the classification layers (red area in Figure 3.1) to decide on the label of the sentence.
We define multiple architectures as the classification layers. However, for demonstration
purposes, we visualize our most straightforward context-agnostic architecture (referred
to as Model A) in the figure. All of the architectures are introduced in Section 3.1.3.
The different network architectures are obtained by implementing different classification
layers. Thus, the rest of the networks stays the same for any context-agnostic model.

17

Average Pooling

Input layer
(single sentence)

Contextual word
embedding

model

Word
encodings

Pooling
layer

Sentence
encoding

...

...

...

... Classification
network

Output layer

...

...

...

...

...

...

Average Pooling

...

...

...

...

BERT

...

...

...

...ELMo

Figure 3.1: The Model A neural network architecture in the context-agnostic classifica-
tion approach.

3.1.1 Word Embedding Model Integration

The sentence encoding aims to generate numerical vector representations of a given
sentence. Generating sentence representations can be done in many ways, as discussed
in Section 2.4. A sentence is a set of words ordered in a meaningful way and can be
encoded by using the properties of the words that it contains. Following this idea,
our approach to get sentence representations starts with encoding each word in a given
sentence using contextual word embeddings. Due to the data and hardware constraints,
instead of training a new model, we make use of the general-purpose word embedding
models that are trained on a large scale corpus. More specifically, we incorporate two
state-of-the-art encoding algorithms that have publicly available pre-trained models,
namely ELMo and BERT.

There are currently two strategies to incorporate pre-trained language models to
downstream classification tasks; feature-based and fine-tuning. In the feature-based
strategy, the pre-trained model is utilized as an external system. We send a word
and its context as an input to the pre-trained model. Then, the model returns the
word embedding calculated for that word. The weights of the embedding model do
not change based on the downstream task during training. We integrate the ELMo
embedding model with feature-based strategy. For this, we use the pre-trained model of
ELMo trained on 1 Billion Word Benchmark [7] dataset. The model is hosted by Google
on TensorFlow Hub1.

1Models hosted by Google on TensorFlow Hub: https://tfhub.dev/google/. Accessed on 9 January
2020

18

In the fine-tuning strategy, we consider the pre-trained word embedding model as a
group of trainable hidden layers and embed them into our neural network architecture.
During the training of the entire neural network, the weights of the word embedding
layers are also reconfigured. Thus, the parameters of the model are fine-tuned on our
domain-specific text. All the parameters of pre-trained BERT models can be fine-tuned
end-to-end to model a downstream NLP task as it is designed to be a transfer learning
model. Thus, we integrate the pre-trained BERT model with the fine-tuning strategy.
We use the uncased BERT model with 12 hidden layers, trained on Wikipedia and Book-
Corpus data and hosted by Google on TensorFlow Hub. Although the recommended
way is fine-tuning all the 110,000,000 pre-trained parameters, we could only fine-tune
the last four layers (28,000,000 parameters) of the model with our hardware setup that
consists of a single NVIDIA GeForce 1080 Ti graphics processing unit with 11 gigabytes
of memory.

3.1.2 Word to Sentence Encodings

By default, the pre-trained word embedding models are trained to return a vector per
given word (Figure 3.1). For a sentence s is {w1, w2, w3, . . . , wL}, w represents a word
and L is the number of words. If the pre-trained word embedding model returns vectors
with length D per w, the sentence s is represented by a matrix of size L×D. Given that
for ELMo model D = 1024 and for BERT model D = 768, training our neural network
on L ×D is computationally expensive. Thus, the final step of our encoding approach
consists of applying a function to reduce the encoding dimensionality from L ×D to a
vector with length D, as shown in Figure 3.2.

Figure 3.2: Average pooling strategy is used to reduce the dimensionality of the repre-
sentations from L×D matrix to a vector with length D.

As the dimensionality reduction strategy, we apply the average pooling method. In
average pooling, we take each information into account and transfer it to the next layer,
unlike max-pooling where only the largest of the features are selected. We apply the
average pooling linearly. For word embedding vectors with features {f1, f2, f3, . . . , fD},
we calculate the sum of each nth feature fn from each vector and then divide it by the
total number of words, L. The result is the nth feature of the sentence embedding vector
s
′

(Eq. 3.1).

s
′

= {
∑L

i=1 f1i
L

,

∑L
i=1 f2i
L

, . . . ,

∑L
i=1 fDi

L
} (3.1)

As an alternative to the average pooling method, adding an additional Long Short-
Term Memory (LSTM) layer is also an effective way to obtain sentence representations.
However, using LSTM layers increases the computational complexity, and our prelimi-
nary experiments showed that it does not significantly improve over the pooling method.

19

3.1.3 Label Predictions

After the encoding, the sentence representations are passed to the next layers that
further process them to decide on the labels. The rest of the architecture is defined by
us. We experiment with different network architectures to demonstrate the full potential
of the neural networks. The architectures are created by varying the types of the hidden
layers, adding residual connections, the order of the layers, using dropout, and using
batch normalization. The number of hidden units, kernel sizes and dropout rates for
each of the networks are heuristically decided based on the output sizes of the layers.

All of the given architectures are run once with integrating the ELMo embedding
model and once with integrating the BERT embedding model. Below the ‘encoding
network’ refers to ELMo and BERT models (explained in Section 3.1.1) and the ‘pooling
layer’ refers to the average pooling method (explained in Section 3.1.2). In the rest of
this thesis, we refer to different architectures by their index (e.g., ELMO-based Model
A).

A. The encoding network and pooling layer are followed by a single fully connected
(FC) layer with 256 hidden units (Appendix, Figure A.1).

A2. More sophisticated version of the above Model A; the encoding network and pool-
ing layer are followed by a FC layer with 256 hidden units, batch normalization,
dropout with 0.5 rate, another FC layer with 128 hidden units, and a batch nor-
malization (Appendix, Figure A.2).

B. The encoding network and pooling layer are followed by 4 FC layers with 256
hidden units. For a network with hidden layers {l1, l2, l3, l4}, a residual connection
is implemented in a way that adds the outputs of l1 to the outputs of l3 before
continuing to l4 (Appendix, Figure A.3). To perform the addition, we use the
‘Add’ layer2 provided by the Keras Python package.

B2. A sophisticated version of Model B. The only difference is the batch normalization
and dropout with 0.3 rate applied after each FC layer within the residual block
(Appendix, Figure A.4).

C. The encoding network and pooling layer are followed by two sets of 1-dimensional
(1-D) convolutional layer with 64 filters and 5 kernel size followed by a 1-D max-
pooling layer. Then the output is flattened and fed into a FC layer with 512 hidden
units (Appendix, Figure A.5).

D. The encoding network and pooling layer are followed by two 1-dimensional (1-D)
convolutional layer with 64 filters and 5 kernel size. However, the output of the
first convolutional layer is added to the second convolutional layer by a residual
connection (in the same way with Model B). After the addition of the outputs, a
1-dimensional max-pooling layer is applied, the output is flattened and fed into a
FC layer with 256 hidden units (Appendix, Figure A.6).

For any of the above neural models, the output layer is a fully connected layer with
2 units and softmax activation. The number of output units is due to using the one-hot
encoded versions of our labels. In one-hot encoding, our positive class is represented as
[0, 1] and the negative class is represented as [1, 0].

The implementation of the neural networks is done by using Keras version 2.2.4 [8]
and Tensorflow version 1.14 [1] Python libraries.

2Add layer: https://keras.io/layers/merge/#add. Accessed on 9 January 2020

20

https://keras.io/layers/merge/#add

3.1.4 Other Network Configurations

Besides the network architecture, we determine the other configurations of the network,
including the loss function, number of epochs, the optimizer function, and the learning
rate:

• Loss function: Our task at hand is essentially a binary classification problem.
Thus, we use the binary cross entropy method as the loss function for all of the
networks for the context-agnostic approach.

• Loss optimizers: We experiment with two of the most common optimization
algorithms: Adam and RMSprop.

• Epochs:

– Networks with the ELMo model: The number of epochs is heuristically set
to 50. We also save the model each time an epoch is finished. In the end, we
select the best performing model to be used in the test.

– Networks with the BERT model: The developers of the BERT model suggests
fine-tuning it for one or two epochs, and thus, we run BERT for one epoch.

• Learning Rate Reduction: We use a method to reduce the learning rate pro-
portionally during the training of the algorithm if the performance score does not
improve after a number of epochs. For our experiments, we have set it to re-
duce the learning rate by a factor of 0.1 if no improvement is observed after 3
epochs. However, we also set a minimum learning rate as 0.00001 to prevent too
small learning rates which would potentially prevent the learning. This is only
applied in ELMo-based networks since BERT-based networks are only trained for
one epoch.

• Learning rates: For both ELMo and BERT versions of our networks, we exper-
iment with multiple learning rate values. However, these values are set differently
for ELMo and BERT-based versions.

3.1.5 Baselines

To have a better understanding of the performance of our neural network-based ap-
proach, we compare it against a baseline based on classical machine learning algorithms.
More specifically, we train Decision Trees, Random Forests, and Support Vector Ma-
chines classifiers on the Bag-of-Words encodings using TF-IDF method to calculate the
weights for the encodings. Because our task is classifying the sentences, the document
frequency for us is the total number of occurrences of words in unique sentences (see
Section 2.4.1). Moreover, we limit the vocabulary by setting upper and lower boundaries
on the document frequency, instead of using each token present in the corpus. These
limitations are listed below:

• Maximum document frequency was set empirically by trying different values and
observing the results on a validation set. For this study, the optimal ratio is set to
12%. This ratio helps us to exclude words generally accepted as stop words, such
as “of”, “that”, “and”, as much as the corpus specific ones.

• Minimum document frequency was set empirically as well. We set this condition
to capture the words that occur at least in 10 different documents. Thus, any
word used in less than 10 documents is not included in the vocabulary.

21

• We empirically discovered that the numerals also do not contribute to distinguish-
ing instances with different classes in this task. Thus numerical values between 0
and 10.000 are not included in the vocabulary.

In addition to the classical machine learning algorithms, we also experiment with
training a neural network by using the same TF-IDF vectors in order to understand the
contribution of using contextual word embeddings. More specifically, we use the Model
A explained in Section 3.1.3, with TF-IDF vectors as input.

The baseline models are trained and tested on the same dataset as the neural network
approach in order to be comparable to each other. The hyperparameters of the baseline
algorithms are optimized by the grid-search method. Each parameter combination is
used to train a model on the training set. Then, each of these models is evaluated on the
validation set, and the performances are recorded. The model with the best performing
hyperparameter combination is selected to be evaluated on the test set. Finally, the test
set results are compared to the proposed neural network-based models.

The best performing hyperparameter combinations per algorithm are listed below.

• Decision Tree algorithm: min samples split: 170, max features: None, max depth:
None, min samples leaf: 5.

• Random Forest algorithm: n estimators: 300, max depth: None, max features:
0.2, bootstrap: True, min samples split: 10.

• Support Vector Machine algorithm: kernel: ’linear’, C: 3.

The implementation of the classical machine learning algorithms is done by using
the 0.20.0 version of the Scikit-learn [30] Python library.

3.2 Context-dependent Event Classification

In the previous section, we considered each sentence as an independent instance. Each
sentence is deliberately written in relation to its preceding and following sentences to
create a coherent document entity. To put it another way, the consecutive sentences in
an article tell a single story collectively. If they are considered separately, they might
represent different meanings and events. As humans, we also process the information
in an article as a storyline and consider all previous and next information during un-
derstanding. In this section, we follow a context-dependent approach. We modify our
network architecture to detect event-related sentences by taking their preceding and
following sentences into account.

22

ELMo or BERT model

Average Pooling

...

...

ELMo or BERT model

Average Pooling

...

...

ELMo or BERT model

Average Pooling

...

...

1st Sentence

Sentence
Encoders

...

...

2nd Sentence Nth Sentence

Sequence
Classification

Network

Output layer
(many-to-many)

...

Figure 3.3: The general neural network architecture in the context-dependent classifica-
tion approach. Here the figure demonstrates a network for article-as-sequence strategy.
For the sliding window strategy, only the output layer would be different (see Section
3.2.1).

Our approach can be defined as a sequence classification of the sentences. In sequence
classification, the inputs are given as a sequence over space and predictions are made
for the entire sequence. As can be seen in Figure 3.3, multiple sentences are given to
the neural network at once. For context-dependent sentence classification, we propose
two different strategies which are explained in Section 3.2.1. Initially, each sentence is
encoded independently from the others and encoded only by the words that it contains.
The encoding is done by the aforementioned word embedding models (see Section 3.1.1)
and the average pooling method (see Section 3.1.2). Then the encoded sentences are
fed into the sequence classification layers of the network (red area in Figure 3.3). In
the figure, the classification part consists of a single Long Short-Term Memory layer
for visualization purposes. However, we define multiple and more complex architectures
which are introduced in Section 3.2.2. The different architectures are obtained by varying
the classification layers. Thus, the rest of the networks would stay the same for any
context-dependent model mentioned in Section 3.2.2.

3.2.1 Sequencing Strategies

Sliding window strategy

We create sequences of sentences by a sliding window. Each sentence is turned into a
sequence consists of itself and its surrounding sentences. And, each sequence contains
the preceding sentence(s), the corresponding sentence, and the following sentence(s).
The number of preceding and following sentences in the sequence is controlled by a
hyperparameter called window-width. Thus the sliding window strategy allows us to
control the context that should be taken into account to classify the corresponding
sentence.

If we create a sequence with window-width set to 3 for a sentence at position i,
the sequence will be {sentencei−1, sentencei, sentencei+1}, as exemplified in Table 3.1.
Naturally, the first sentence in an article does not have a preceding sentence, and the
last sentence does not have a following one. For the situations with a missing preceding
and/or following sentence, we place a padding sentence that contains a single word saying
“PADDING”. In our experiments, we run each of the sequence classification networks
with window-width set to 3, 5, and 7.

23

Corresponding Sentence Generated Sentence Sequence
S1 Spadding, S1, S2

S2 S1, S2, S3

S3 S2, S3, S4

S4 S3, S4, Spadding

Table 3.1: Example sequence generation. Here the example article consists of 4 sentences
in total and the window-width is set to 3. Notice how we use the padding sentence for
the non-existent sentences.

The sequences are fed into the sequence classification part of the network that con-
sists of LSTM layers. The sliding window strategy aims to decide on the label for the
corresponding sentence by encoding the entire given sequence. Thus, the output layer
is configured to return only one prediction, even though the input contains many sen-
tences. This is also known as many-to-one architecture. Figure 3.4 shows the difference
in the output layer compared to aforementioned architecture in Figure 3.3

Sentence
Encoder

Sentence
Encoder

Sentence
Encoder

1st Sentence 2nd Sentence 3rd Sentence

Sequence
Classification

Network

Output layer
(many-to-one)

...... ...

Figure 3.4: Simplified visualization of the context-dependent neural network with the
many-to-one output layer. As an example, we show the network with window-width
hyperparameter set to 3.

Article-as-sequence strategy

In an article, every sentence interacts with others in order to create a single meaningful
unified piece. Moreover, some of the sentences contain distant relations; the same in-
formation can occur at the beginning of an article and again at the end of it. Here, we
use the article-as-sequence strategy to capture such distant relations and classify each
sentence using the information in the entire article.

Sentences in an article are written one after another, making each article a natural
sequence of sentences. This allows us to create the sequences from all of the sentences of
the article. To be able to process the sequences in the rest of the network, they need to
be at the same length. The articles, however, contain a varying number of sentences. We
define another hyperparameter, sequence-length, and adjust the article sequences to be
at that length. If an article contains fewer sentences than the number in sequence-length
parameter, we add padding sentences to the end of the article. For instance, if sequence-
length parameter is set to 6 and the article contains 3 sentences, the sequence will be
{sentence1, sentence2, sentence3, sentencepadding, sentencepadding, sentencepadding}.

For the ELMo-based networks, we use a padding sentence that contains a single word
“PADDING” that is sent to ELMo model to be encoded. In the BERT-based networks,
we feed BERT model with arrays contain only “0” (zero) as the padding.

The downside of this strategy is that the final sentences of an article are pruned
if the article contains more sentences than the sequence-length. For our study, we
set the sequence-length to the maximum article length found in our dataset used in

24

our experiments (detailed in Section 4.1.1). Thus, in our study, we have encoded and
analysed every sentence in each article, leaving none of them out.

3.2.2 Label Predictions

In the next step, these sequences of sentence representations are passed to the layers that
do the sequence classification to decide on the labels. We focus on using a special neural
network architecture that can process sequences of inputs, namely Recurrent Neural
Networks (RNN). Traditional RNNs suffer from vanishing gradient problem where the
update on the weights of the earlier layers becomes vanishingly small with each back-
propogation. As a result, the earlier weights do not contribute to reducing the loss; in
other words, the connection with them is lost.

We use Long Short-Term Memory (LSTM) [14] layers that are capable of handling
the vanishing gradient problem and able to build long-term dependencies. At each
time step LSTM calculates whether the information should be remembered or forgotten
through its forget gate weights. The forget gate activations are close to 1, which prevents
gradient from being multiplied by smaller values and get vanished over time.

LSTM implementation follows a unidirectional method reading the data from the
beginning to the end (or vice versa) and construct the dependencies. It only considers
information that has seen by it so far. Here, we use the Bidirectional LSTM (BiLSTM)
approach [16], which reads the data once from the beginning to the end and once from
the end to the beginning. Thus the information for each data point is encoded with
both preceding and following information taken into account.

In order to create an optimal architecture for classification, we run experiments with
different versions of our network. The network architectures are created by varying a
fully connected layer, adding residual connections, the order of the layers, and using
dropout. The number of hidden units and dropout rates for each of the networks are
heuristically decided based on the output sizes of the layers.

All of the given architectures are run once with integrating the ELMo embedding
model and once with integrating the BERT embedding model. Below the ‘encoding
network’ refers to ELMo and BERT models explained in Section 3.1.1 and the ‘pooling
layer’ refers to the average pooling method explained in Section 3.1.2. In the rest of
this thesis, we refer to different types of architectures by their index (e.g., ELMO-based
Model E). The naming starts from ‘E’ with the aforementioned network architectures
to prevent the confusion.

E. The encoding network and pooling layer are followed by a single BiLSTM layer
with 256 hidden units and a dropout regularization with 0.4 rate (Appendix, Figure
A.7).

F. The encoding network and pooling layer are followed by two BiLSTM layers with
256 hidden units. The output of the first BiLSTM layer is added to the second
BiLSTM layer to form a residual connection. After the addition of the outputs, a
dropout with 0.4 rate is applied (Appendix, Figure A.8).

G. The encoding network and pooling layer are followed by a FC layer with 256 hidden
units and a BiLSTM layer with 128 hidden units (Appendix, Figure A.9).

H. The encoding network and pooling layer are followed by a FC layer with 256
hidden units and two BiLSTM layers with 256 hidden units. The output of the
first BiLSTM layer is added to the output of the second BiLSTM layer to form a
residual connection before the output layer (Appendix, Figure A.10).

25

The output layers of all ELMo-based networks are an LSTM layer with two units
and softmax activation. Our preliminary experiments on the validation set have shown
that the context-dependent BERT-based networks perform better with sigmoid activa-
tion than the softmax activation. Thus, we used sigmoid activation for BERT-based
networks.

The same neural network configurations explained in Section 3.1.4 are also applied
to the context-dependent neural networks. Additionally, we accept the context-agnostic
neural network models as our baselines that help us to assess the contribution of the
context-dependent approach.

The neural network models are implemented by using Keras version 2.2.4 [8] and
Tensorflow version 1.14 [1] Python libraries.

26

Chapter 4

Evaluation

In this chapter, first, we describe the dataset and give a statistical analysis of it. Next,
we elaborate on the evaluation metric we used. Finally, we present the results of our
experiments.

4.1 Experimental Setup

4.1.1 Dataset

We use ProtestNews dataset for evaluating our experiments. The dataset consists of 587
English written Indian news articles, published in India between 2001 and 2017. The
news articles were collected, scraped, and annotated by the Department of Sociology in
Koç University, in the scope of the ERC funded Emerging Welfare project [17].

In the first step of the annotation process, the news articles were annotated at the
document level with “event” or “non-event” labels1. Scope of the project is narrowed to
find protest events that were happened or happening at the time of the article published.
Hence, the annotators only labeled an article as an “event”, if the article mentions past
or ongoing protest events. In the second step of the annotation process, 8,337 sentences
were manually annotated as “event” and “non-event”. Both articles and sentences were
assessed by two annotators, and the disagreements were adjudicated by a third person.
The annotators were graduate students in social and political sciences.

To mitigate working with imbalanced data, we consider only the articles that are
manually annotated as protest-related. Some articles do not contain any sentences
labeled as “event”, meaning that all the sentences in those articles were annotated as
“non-event”. This causes an imbalance between the negative and positive class. To
maintain the balance, we dropped such articles without any “event” labeled sentences
from our dataset. As a result of this elimination process, there were 315 articles left in
total. We refer these 315 articles as the total dataset in the rest of this document.

We split the dataset into three subsets in the article level; 80% of the articles are
used for training, 10% for validation, and 10% for a test, which corresponds 251, 32, and
32 articles respectively. Overall, on the sentence level, the training set contains 3,582
sentences, validation set has 399 sentences, and the test set has 441 sentences in total.

Figure 4.1 shows the ratios of “event” and “non-event” sentence labels over these
different datasets and in the total dataset. As can be seen in the figure, in the total
dataset, there are 3,060 non-event sentences and 1,299 event sentences, meaning that
70% of the sentences are labeled as “non-event” and 30% as “event”. The same ratio

1Annotation manual can be found at https://github.com/emerging-
welfare/generalinfo/tree/master/annotation−manuals, Accessed on 24 January 2020.

27

https://github.com/emerging-welfare/general_info/tree/master/annotation-manuals
https://github.com/emerging-welfare/general_info/tree/master/annotation-manuals

2472
268

320
3060

1053 130 116 1299

R
at

io
 (%

)

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Training Set Validation Set Test Set Total Dataset

Event Non-Event

Figure 4.1: The ratios of event and non-event labels over the sentences across different
subsets and in the total dataset. The numbers on the chart show the number of sentences
belongs to that particular category.

is observed for the training data, with 2,472 non-event and 1,053 event sentences. The
validation set and test sets are quite close to this ratio with 67% and 73% “non-event”
ratios. While the validation set contains 130 event sentences, the test set contains 116
event sentences (Appendix, Table B.1).

Figure 4.2 shows the ratios of “event” and “non-event” sentences for each article in
the total dataset and all its subsets. In 222 articles, more than 50% of the sentences
are labeled as “non-event”, while another 75 articles have the “event” sentences as the
majority class. Hence, in the 70% of the articles “non-event” sentences are the majority,
and 24% of the articles the “event” sentences are the majority. There are also 18 articles
with 50%-50% of the labels, which makes the 6% of the articles. Finally, we also see
that another six articles contain only “event” sentences. Similarly, Figure 4.3 shows the
ratios of “event” and “non-event” sentences for each article in the test set. As we can see
in the figure, the distribution of the ratios is similar to the total dataset. Furthermore,
in the test set, on average, “non-event” sentences are the majority in the 74% of the
articles and “event” sentences are the majority in 21% of them. These statistics are
helpful to understand the outcome of using the whole article for the context-dependent
classification of the sentences.

Article No.

R
at

io
 (%

)

0%

25%

50%

75%

100%

1 10 19 28 37 46 55 64 73 82 91 10
0

10
9

11
8

12
7

13
6

14
5

15
4

16
3

17
2

18
1

19
0

19
9

20
8

21
7

22
6

23
5

24
4

25
3

26
2

27
1

28
0

28
9

29
8

30
7

Event Non-Event

Figure 4.2: The ratios of “event” and “non-event” sentences per article in the total
dataset. Each bar is an article. The blue shows the density of event sentences in an
article and the red shows the density of non-event sentences in an article.

28

Article No.

R
at

io
 (%

)

0

25

50

75

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Event Non-Event

Figure 4.3: The ratios of “event” and “non-event” sentences per article in the test set.
Each bar is an article. The blue shows the density of event sentences in an article and
the red shows the density of non-event sentences in an article.

Figure 4.4 demonstrates the distributions of different sentence lengths based on token
counts in the different datasets. The figures are created to give an idea of the sentence
lengths. Although some of our approaches have their own tokenization method (e.g.,
BERT tokenizer), we tokenize the words by splitting spaces. The maximum number of
tokens in a single sentence in the total dataset (also the training set) is 105, while the
maximum in the validation and test sets are 97 and 95 (Appendix, Table B.2). There
are only 15 sentences longer than 65 token lengths. The average lengths in the total
dataset, training set, validation set, and test set are all 24. The median of the sentence
lengths in the total dataset, training set, validation set, and test set are 22, 22, 22, 23,
respectively. In this project, we are encoding sentences by using embeddings of words.
Thus, the number of words have an impact on our results.

Figure 4.4: The distributions of different sentence lengths based on token counts in
different datasets.

29

4.1.2 Evaluation Metrics

In this study, we use the same evaluation metrics for all experiments. These metrics are
precision, recall, and f1-score. The precision metric shows us how precise (or accurate)
a model’s prediction is on a class. It is the ratio of the number of correctly predicted
instances to the number of predictions made:

precision =
correct predictions

all predictions
=

true positives

true positives+ false positives
(4.1)

For instance, in our binary classification case, the precision score is calculated by
dividing the correctly predicted “event” sentences by any “event” prediction made by a
model.

Recall metric helps us understand how much of relevant data for a class can be
correctly predicted by a model. It is calculated by dividing the number of correctly
predicted instances by the number of all relevant instances:

recall =
correct predictions

all correct answers
=

true positives

true positives+ false negatives
(4.2)

For our binary classification case, a recall score of a model is calculated by dividing
the correctly predicted “event” sentences by the number of sentences manually labeled
as “event” in the test set. The precision and recall scores are providing us with different
views on the performance of a model. As these views are equally crucial for us, we are
using a third metric, f1-score, that strikes a balance between them. f1-score is calculated
by taking the harmonic mean of precision and recall scores for a class:

f1 = 2× true positives

(2× true positives) + false negatives+ false positives

= 2× precision× recall
precision+ recall

(4.3)

As can be seen in Equation 4.3, f1-score ignores the number of true negatives which
helps to understand the actual performance of a class. Especially in imbalanced datasets
such as ours, where the majority of the instances are true negatives. Each of these
metrics is calculated per class both in binary and multi-class setups. However, we
aim to generate a single score that can summarize the overall performance of a model
covering all the classes. For this, we take an average of the scores calculated per class.
There are three different averaging approaches: micro, macro, and weighted averaging.
In the micro averaging method, each correct prediction is added in a unified set of true
positives, and each error is added to the set of false-positives. Hence, the false-negative
cases are treated as same as the false-positives. Consequently, given the formulas, recall
(Eq. 4.2), precision (Eq. 4.1), and f1-score (Eq. 4.3) calculation become the same. The
weighted averaging approach is the arithmetic mean of the scores per class where each
class is multiplied with the number of instances for their corresponding classes before
getting divided by the total number of instances. Given that n is the number of classes
and wi is the number of instances for the corresponding class, we can formulate the
weighted average as:

Weightedf1 =

∑n
i=1 wif1i∑n
i=1 wi

(4.4)

30

Finally, the macro averaging is the simple arithmetic mean of the metric for each
class. We can formulate macro averaging as following where n is the number of classes:

Macrof1 =
1

n
×

n∑
i=1

f1i (4.5)

The micro and weighted averaging strategies can be misleading about a model’s
performance if there is a significant class imbalance in the dataset. When the volume of
the majority class is too high, a model tends to overpredict the majority class. Thus, the
majority class obtains high scores. This situation may happen even if the other classes
are not predicted at all. Micro and weighted averaging follow the majority class, and
thus, hide the model’s actual performance. In this study, we use macro averaged scores
to prevent the majority class dominating the others in the evaluation scores caused by
our imbalanced dataset. Table 4.1 shows the scores calculated when all of the instances
in the test set are predicted as “non-event”. In such a case, macro averaged precision,
recall, and f1-score are 0.37, 0.50, and 0.42, respectively. Similar behaviour is observed
when all of the instances are predicted as “event” which results in 0.13 precision, 0.50
recall, and 0.21 f1-score. We consider these numbers as our lower-bound scores.

All predicted as “non-event” All predicted as “event”
Precision Recall F1-score Precision Recall F1-score

“non-event” 0.74 1.00 0.85 0.00 0.00 0.00
“event” 0.00 0.00 0.00 0.26 1.00 0.42

Macro Averages 0.37 0.50 0.42 0.13 0.50 0.21

Table 4.1: Evaluation metric scores when a model predicts all of the data points as
“non-event” and “event” separately.

4.2 Results

In this section, we present the results of the experiments held during the study. We di-
vided the content into two categories, corresponding to the methods introduced in Chap-
ter 3. The first section shows the results of the neural network-based context-agnostic
approach compared to the classical machine learning approaches. The second section
contains the results from our context-dependent approach compared to the context-
agnostic approach results. Additionally, for each approach, we report on the results of
our method using the different architecture of our networks and various optimization
techniques. Thus, within each section, we first present the results of the optimization
experiments, pick the best fitting models and use them in the comparisons.

4.2.1 Context-agnostic Classification Experiments

As explained in Section 3.1.3, we created six different neural network designs. Each
architecture is trained with ELMo and BERT models separately. Additionally, each of
the models trained once with Adam optimizer and once with RMSprop optimizer. We
first present the results from ELMo-based networks and then present the BERT-based
network results. Finally, we compare the highest scoring results obtained by neural
network models to the results from classical machine learning models.

31

Architecture Optimization Results

Figure 4.5 shows the macro averaged f1-scores obtained on the validation set by using
ELMo pre-trained word embeddings in our neural networks. The figure shows that
all models(except for a few) obtain f1-score between 83% and 86%. The highest score
was 86.6% obtained by the Model B2 trained with Adam optimizer and 0.005 initial
learning rate (green bar on Figure 4.5). We use this model for our comparisons to the
other approaches, such as the BERT-based models.

Model names

M
ac

ro
 f1

-s
co

re

0.4

0.5

0.6

0.7

0.8

0.9

A_
ad

am
_0

.0
1

A_
ad

am
_0

.0
01

A_
ad

am
_0

.0
05

A_
rm

sp
ro

p_
0.

01

A_
rm

sp
ro

p_
0.

00
1

A_
rm

sp
ro

p_
0.

00
5

A2
_a

da
m

_0
.0

1

A2
_a

da
m

_0
.0

01
A2

_a
da

m
_0

.0
05

A2
_r

m
sp

ro
p_

0.
01

A2
_r

m
sp

ro
p_

0.
00

1

A2
_r

m
sp

ro
p_

0.
00

5
B_

ad
am

_0
.0

1
B_

ad
am

_0
.0

01
B_

ad
am

_0
.0

05

B_
rm

sp
ro

p_
0.

01

B_
rm

sp
ro

p_
0.

00
1

B_
rm

sp
ro

p_
0.

00
5

B2
_a

da
m

_0
.0

1

B2
_a

da
m

_0
.0

01
B2

_a
da

m
_0

.0
05

B2
_r

m
sp

ro
p_

0.
01

B2
_r

m
sp

ro
p_

0.
00

5
C_

ad
am

_0
.0

01
C_

ad
am

_0
.0

05

C_
rm

sp
ro

p_
0.

00
1

C_
rm

sp
ro

p_
0.

00
5

D_
ad

am
_0

.0
1

D_
ad

am
_0

.0
01

D_
ad

am
_0

.0
05

D_
rm

sp
ro

p_
0.

01

D_
rm

sp
ro

p_
0.

00
1

D_
rm

sp
ro

p_
0.

00
5

Figure 4.5: Optimization results of different neural network architectures with ELMo
embeddings obtained on the validation dataset. The graph only shows the scores higher
than 70%. The horizontal axis displays names with the representative value for the
architecture, the optimizer, and the learning rate used to train the model. The green
bar shows the best performing model.

The macro averaged f1-scores obtained on the validation set by BERT-based neural
network models is shown in Figure 4.6. We see that most of the results vary from 83%
to 88%. The highest score was 87.9% obtained by the Model A optimized by Adam
with 0.0001 learning rate (green bar on Figure 4.6). Thus, we used this model in our
comparisons to other approaches.

32

Model names

M
ac

ro
 f1

-s
co

re

0.4

0.5

0.6

0.7

0.8

0.9

A_
ad

am
_0

.0
00

1
A_

ad
am

_2
e-

05
A_

ad
am

_4
e-

05

A_
rm

sp
ro

p_
0.

00
01

A_
rm

sp
ro

p_
2e

-0
5

A_
rm

sp
ro

p_
4e

-0
5

A2
_a

da
m

_0
.0

00
1

A2
_a

da
m

_2
e-

05

A2
_a

da
m

_4
e-

05

A2
_r

m
sp

ro
p_

0.
00

01

A2
_r

m
sp

ro
p_

2e
-0

5

A2
_r

m
sp

ro
p_

4e
-0

5

B_
ad

am
_0

.0
00

1
B_

ad
am

_2
e-

05
B_

ad
am

_4
e-

05

B_
rm

sp
ro

p_
0.

00
01

B_
rm

sp
ro

p_
2e

-0
5

B_
rm

sp
ro

p_
4e

-0
5

B2
_a

da
m

_0
.0

00
1

B2
_a

da
m

_2
e-

05

B2
_a

da
m

_4
e-

05

B2
_r

m
sp

ro
p_

0.
00

01

B2
_r

m
sp

ro
p_

2e
-0

5

B2
_r

m
sp

ro
p_

4e
-0

5

C_
ad

am
_0

.0
00

1
C_

ad
am

_2
e-

05
C_

ad
am

_4
e-

05

C_
rm

sp
ro

p_
0.

00
01

C_
rm

sp
ro

p_
2e

-0
5

C_
rm

sp
ro

p_
4e

-0
5

D_
ad

am
_0

.0
00

1
D_

ad
am

_2
e-

05
D_

ad
am

_4
e-

05

D_
rm

sp
ro

p_
0.

00
01

D_
rm

sp
ro

p_
2e

-0
5

D_
rm

sp
ro

p_
4e

-0
5

Figure 4.6: Optimization results on the validation set of different neural network
architectures with BERT encodings. The graph only shows the scores higher than 70%.
The horizontal axis displays names with the representative value for the architecture,
the optimizer, and the learning rate used to train the model. The green bar shows the
result from the highest scoring model.

Comparing different context-agnostic methodologies

Finally, we compare the highest-scoring artificial neural network-based models to op-
timized classical machine learning model results. In Table 4.2, we see that neural
networks-based approaches outperform classical machine learning models on the vali-
dation set. While decision tree, random forest and SVM models obtain at most 82%
f1-score, both BERT-based and ELMo-based neural network models’ f1-scores are above
85% on the validation set. Likewise, we see that BERT-based Model A network outper-
form the TF-IDF-based Model A neural network with a high margin on the validation
set and the test set.

Amongst the classical machine learning models, the decision tree model obtains the
highest f1-score on the test set (79%). The random forest model follows them with a
slightly lower score. While the differences between these scores are not marginal, BERT-
based Model A obtains the highest f1-score at 82.2% on the test set and outperforms
the decision tree model by 4% with respect to f1-score. We observe that ELMo-based
Model B2 obtains 78.5% f1-score and does not outperform the decision tree model on
the test set.

Here we also see a comparison between feature-based ELMo-based and fine-tuning
based (BERT) approaches. BERT-based Model A obtains 87.9% f1-score, ELMO-based
Model B2 obtains 86.6% on the validation set. On the test set, BERT-based Model A
obtains 82.2%, and ELMO-based architecture Model B2 obtains 78.5% f1-score. Thus,
we see that BERT-based models perform better than the ELMO-based models both on
the validation and test sets.

33

Macro F1-scores (%)
On Validation Set On Test set

Decision Tree (TF-IDF) 81 79
Random Forest (TF-IDF) 82 78

Support Vector Machines (TF-IDF) 80 70
TF-IDF-based Model A 79 72
ELMo-based Model B2 86.6 78.5
BERT-based Model A 87.9 82.2

Table 4.2: Comparisons of context-agnostic approaches with highest scores obtained
during optimization.

4.2.2 Context-dependent Classification Experiments

To determine the optimal network architecture for context-dependent neural networks,
we defined four different neural network designs which have been trained with ELMo
and BERT models separately. Additionally, each of the models trained once with Adam
optimizer and once with RMSprop optimizer. These experiments have been repeated for
each sequencing strategy and window-width hyperparameter. Here we only display the
highest scores obtained for each strategy to make comparisons between them. Finally,
we make a comparison with the highest scores for the context-dependent experiments
to the results of the context-agnostic experiments.

Sequencing Strategy Results

In Section 3.2.2, we introduced two different strategies to create sequences of sentences:
sliding window and article-as-sequence. Each of the network designs has been trained
with each of the strategies. Within the sliding window sequencing experiments, we have
trained each network design with window-width 3, 5, and 7.

Figure 4.7 shows results obtained by the models scored the highest f1-score on the
validation set. Article-as-sequence strategy with ELMo-based networks obtains 78.6%
f1-score on the test set, which is the highest score of all context-dependent experiment
results. We observe that the ELMo-based models obtain 74.3% f1-scores on the test
set with the sliding window strategy (window-width = 3). The BERT-based networks
obtain 74.9% f1-score on the test set with article-as-sequence strategy and obtain 66%
with the sliding window strategy (window-width = 3). Thus, we observe that the f1-
scores are decreased when the sliding-window strategy is applied.

We observe that the highest scores are obtained with article-as-sequence strategy.
When we apply the sliding-window strategy, we see a drop in the performance of the
networks both on the validation set and the test set. This is easy to spot with the blue
(for validation) and red (for test) trend lines given in Figure 4.7. Thus, we have used the
highest-scoring model with the article-as-sequence strategy in our further comparisons.

34

Sequencing Strategies

M
ac

ro
 f1

-s
co

re

0.4

0.5

0.6

0.7

0.8

0.9

Artic
le-as-sequence

Window-width = 3

Window-width = 5

Window-width = 7

Validation Scores Test Scores

ELMo-based networks

Sequencing Strategies

M
ac

ro
 f1

-s
co

re

0.4

0.5

0.6

0.7

0.8

0.9

Artic
le-as-sequence

Window-width = 3

Window-width = 5

Window-width = 7

Validation Scores Test Scores

BERT-based networks

Figure 4.7: Comparisons of the highest scoring models from different sequencing strate-
gies. The left graph shows the results obtained with ELMo-based networks, and the
right one shows the results obtained from BERT-based networks. The blue lines show
the trend of the scores obtained on validation set and the red lines show the trend of
the scores obtained on the test set. Window-width here is the hyperparameter set for
sliding window strategy.

Comparing context-agnostic and context-dependent methodologies

Finally, we compare the results of the context-dependent approach experiments to
the results of the context-agnostic approach experiments. For that, we have chosen
the highest-scoring BERT-based and ELMo-based model results from each of the ap-
proaches. Table 4.3 shows these results. We see that context-agnostic BERT-based
model outperforms the other models on the test set by obtaining 82.2% f1-score. The
context-dependent BERT-model obtains a score as low as 74.9% on the test set. The
context-agnostic ELMo-based model obtains 78.5% f1-score, and the context-dependent
ELMo-based model obtains 78.6% f1-score, both on the test set.

We see that the ELMo-based models perform close to each other. However, when
the two BERT-based models are compared, we see that the context-agnostic model
outperforms the context-dependent model with a margin as high as 7.3%.

Macro F1-scores
On Validation Set On Test set

Context-agnostic ELMo-based (Model B2) 86.6 78.5
Context-agnostic BERT-based (Model A) 87.9 82.2

Context-dependent ELMo-based (Model G) 84.9 78.6
Context-dependent BERT-based (Model F) 80.2 74.9

Table 4.3: Comparisons between highest-scoring context-dependent approach results
and the highest-scoring context-agnostic approach results. Here, both of the context-
dependent model results are obtained with the article-as-sequence strategy.

35

Chapter 5

Conclusions

In this study, we first explored the effect of the recent state-of-the-art pre-trained con-
textual embeddings on sentence classification in a context-agnostic setup. Second, we
introduced a sequential context-dependent approach to the same task and explored dif-
ferent sequencing strategies. We evaluated our models on a real-world dataset which
aims to detect sentences related to protest events in newspapers. Here, we summarize
our findings and answer the research questions raised in Chapter 1.

Our first research question was “How can we incorporate pre-trained embeddings
to perform sentence classification?”. In order to answer this research question, we
have implemented various neural network-based and classical machine learning-based
approaches. We integrated two contextual pre-trained word embedding models (ELMo
and BERT) into the neural network models. ELMo pre-trained model was integrated
with a feature-based strategy, and BERT pre-trained model was integrated by following
a fine-tuning strategy. In conclusions, we showed that the BERT-based neural net-
work approach outperforms all feature-based approaches (using both neural networks
and classical machine learning algorithms). Comparing the two contextual word em-
beddings, we observed that the fine-tuned BERT-based models obtained better results
compared to ELMo-based models.

Our second research question was “Does taking the context of a sentence into ac-
count improves sentence classification?”. To answer this research question, we employed
a sequential approach with recurrent neural network architectures that can classify se-
quences of sentences. We found that the ELMo-based model in context-dependent set-
ting performs as good as ELMo-based context-agnostic models. On the contrary, the
BERT-based context-agnostic models outperform context-dependent ones. In conclu-
sions, we did not observe improvements using the context-dependent approach com-
pared to the context-agnostic one. Additionally, in the scope of the context-dependent
approaches, we showed that encoding the entire articles as sequences obtains better
result compared to encoding each sentence with its neighbouring sentences in a sliding-
window approach.

Future Work

During the study, we have used the average pooling method to encode sentences from
word embeddings. Average pooling takes each word with equal weight. However, each
word in a text has its own importance. In a future study, we want to experiment with
building an attention mechanism that assigns different weights to words based on their
importance and encode sentences by taking these weights into account.

We have used two different strategies to implement the context-dependent approach.
One of them was a many-to-many sequence classification that takes an entire article as a

36

sequence, and the other was a many-to-one sequence classification where each sequence
is created by a sliding window moving over the sentences. As a future study, we plan
to experiment with a hybrid approach, where a many-to-many classification is applied
to the sequences created by a sliding window. This would generate more than one label
for each sentence, where we can ensemble these labels to obtain the final label.

We also plan to design more complex context-dependent networks, especially for
the sentence encoding part. For instance, after the average pooling layer, we can add
convolutional layers prior to the sequence classification with LSTM layers. Furthermore,
as a future experiment, we plan to experiment with using the BERT word embeddings
as feature vectors of classical machine learning algorithms.

Finally, we could fine-tune only four layers of BERT language models due to the
limitations of the hardware. In a future study, we plan to experiment with fine-tuning
every layer of the BERT model.

Acknowledgements

This work is funded by European Research Council through the ‘The New Politics of
Welfare: Towards an Emerging Markets Welfare State Regime’ project with project
number 714868 and proposal acronym ‘EmergingWelfare’.

37

Bibliography

[1] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing
Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dande-
lion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster,
Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vin-
cent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden,
Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow:
Large-scale machine learning on heterogeneous systems, 2015. Software available
from tensorflow.org.

[2] Mehdi Allahyari, Seyedamin Pouriyeh, Mehdi Assefi, Saied Safaei, Elizabeth
Trippe, Juan Gutierrez, and Krys Kochut. A brief survey of text mining: Clas-
sification, clustering and extraction techniques. 07 2017.

[3] Nicolas Audebert, Catherine Herold, Kuider Slimani, and Cédric Vidal. Multimodal
deep networks for text and image-based document classification. In Conférence Na-
tionale sur les Applications Pratiques de l’Intelligence Artificielle (APIA), Toulouse,
France, July 2019.

[4] Iñigo Barandiaran. The random subspace method for constructing decision forests.
IEEE Trans. Pattern Anal. Mach. Intell, 20(8):1–22, 1998.

[5] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, Oct 2001.

[6] Wray Buntine and Tim Niblett. A further comparison of splitting rules for decision-
tree induction. Machine Learning, 8(1):75–85, Jan 1992.

[7] Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge, Thorsten Brants, and
Phillipp Koehn. One billion word benchmark for measuring progress in statisti-
cal language modeling. Proceedings of the Annual Conference of the International
Speech Communication Association, INTERSPEECH, 12 2013.

[8] François Chollet et al. Keras. https://keras.io, 2015.

[9] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning,
20(3):273–297, 1995.

[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-
training of deep bidirectional transformers for language understanding. In Proceed-
ings of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers), pages 4171–4186, Minneapolis, Minnesota, June 2019. Association
for Computational Linguistics.

38

https://keras.io

[11] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural
networks. In Proceedings of the fourteenth international conference on artificial
intelligence and statistics, pages 315–323, 2011.

[12] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

[13] Jesse Hammond and Nils B Weidmann. Using machine-coded event data for the
micro-level study of political violence. Research & Politics, 1(2):2053168014539924,
2014.

[14] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Com-
put., 9(8):1735–1780, November 1997.

[15] Martin Hofmann. Support vector machines-kernels and the kernel trick. Notes, 26,
2006.

[16] Zhiheng Huang, Wei Xu, and Kai Yu. Bidirectional lstm-crf models for sequence
tagging. 08 2015.

[17] Ali Hürriyetoğlu, Erdem Yörük, Deniz Yüret, Çağrı Yoltar, Burak Gürel, Fırat
Duruşan, Osman Mutlu, and Arda Akdemir. Overview of clef 2019 lab protestnews:
extracting protests from news in a cross-context setting. In International Conference
of the Cross-Language Evaluation Forum for European Languages, pages 425–432.
Springer, 2019.

[18] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
International Conference on Learning Representations, 12 2014.

[19] Kamran Kowsari, Donald E Brown, Mojtaba Heidarysafa, Kiana Jafari Meimandi,
Matthew S Gerber, and Laura E Barnes. Hdltex: Hierarchical deep learning for text
classification. In 2017 16th IEEE International Conference on Machine Learning
and Applications (ICMLA), pages 364–371. IEEE, 2017.

[20] Kamran Kowsari, Kiana Jafari Meimandi, Mojtaba Heidarysafa, Sanjana Mendu,
Laura Barnes, and Donald Brown. Text classification algorithms: A survey. Infor-
mation, 10(4):150, 2019.

[21] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in neural information pro-
cessing systems, pages 1097–1105, 2012.

[22] Anders Krogh and John A Hertz. A simple weight decay can improve generalization.
In Advances in neural information processing systems, pages 950–957, 1992.

[23] Ji Young Lee and Franck Dernoncourt. Sequential short-text classification with
recurrent and convolutional neural networks. In Proceedings of the 2016 Conference
of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pages 515–520, San Diego, California, June 2016.
Association for Computational Linguistics.

[24] Yichen Li, Arvind Tripathi, and Ananth Srinivasan. Challenges in short text clas-
sification: The case of online auction disclosure. In MCIS, page 18, 2016.

[25] Tomas Mikolov, G.s Corrado, Kai Chen, and Jeffrey Dean. Efficient estimation of
word representations in vector space. pages 1–12, 01 2013.

39

http://www.deeplearningbook.org

[26] Thomas M. Mitchell. Machine Learning. McGraw-Hill, Inc., New York, NY, USA,
1 edition, 1997.

[27] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltz-
mann machines. In Proceedings of the 27th international conference on machine
learning (ICML-10), pages 807–814, 2010.

[28] Martina Naughton, Nicola Stokes, and Joe Carthy. Sentence-level event classifica-
tion in unstructured texts. Information retrieval, 13(2):132–156, 2010.

[29] Martina Naughton, Nicola Stokes, and Joe Carthy. Sentence-level event classifica-
tion in unstructured texts. Information retrieval, 13(2):132–156, 2010.

[30] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine
Learning in Python . Journal of Machine Learning Research, 12:2825–2830, 2011.

[31] Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove: Global
vectors for word representation. In Proceedings of the 2014 conference on empirical
methods in natural language processing (EMNLP), pages 1532–1543, 2014.

[32] Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark,
Kenton Lee, and Luke Zettlemoyer. Deep contextualized word representations. In
Proceedings of the 2018 Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technologies, Volume 1
(Long Papers), pages 2227–2237, New Orleans, Louisiana, June 2018. Association
for Computational Linguistics.

[33] Xuan-Hieu Phan, Le-Minh Nguyen, and Susumu Horiguchi. Learning to classify
short and sparse text & web with hidden topics from large-scale data collections. In
Proceedings of the 17th international conference on World Wide Web, pages 91–100.
ACM, 2008.

[34] Kemal Polat, Salih Güneş, and Ahmet Arslan. A cascade learning system for
classification of diabetes disease: Generalized discriminant analysis and least square
support vector machine. Expert systems with applications, 34(1):482–487, 2008.

[35] J. Ross Quinlan. Induction of decision trees. Machine learning, 1(1):81–106, 1986.

[36] PC Rafeeque and S Sendhilkumar. A survey on short text analysis in web. In 2011
Third International Conference on Advanced Computing, pages 365–371. IEEE,
2011.

[37] Lior Rokach and Oded Z Maimon. Data mining with decision trees: theory and
applications, volume 69. World scientific, 2008.

[38] Sebastian Ruder. An overview of gradient descent optimization algorithms, 2016.

[39] S. S. and J. M. Neural Networks for Natural Language Processing. Advances in
Computer and Electrical Engineering. IGI Global, 2019.

[40] Sunita Sarawagi. Information extraction. Foundations and Trends in Databases,
1(3):261–377, March 2008.

[41] Fabrizio Sebastiani. Machine learning in automated text categorization. ACM
computing surveys (CSUR), 34(1):1–47, 2002.

40

[42] Ge Song, Yunming Ye, Xiaolin Du, Xiaohui Huang, and Shifu Bie. Short text
classification: A survey. Journal of multimedia, 9(5):635, 2014.

[43] Karen Sparck Jones. A statistical interpretation of term specificity and its applica-
tion in retrieval. Journal of documentation, 28(1):11–21, 1972.

[44] Bharath Sriram, Dave Fuhry, Engin Demir, Hakan Ferhatosmanoglu, and Murat
Demirbas. Short text classification in twitter to improve information filtering. In
Proceedings of the 33rd international ACM SIGIR conference on Research and de-
velopment in information retrieval, pages 841–842. ACM, 2010.

[45] Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient
by a running average of its recent magnitude. COURSERA: Neural networks for
machine learning, 4(2):26–31, 2012.

[46] Bing-kun Wang, Yong-feng Huang, Wan-xia Yang, and Xing Li. Short text classifi-
cation based on strong feature thesaurus. Journal of Zhejiang University SCIENCE
C, 13(9):649–659, 2012.

[47] Jin Wang, Zhongyuan Wang, Dawei Zhang, and Jun Yan. Combining knowledge
with deep convolutional neural networks for short text classification. In IJCAI,
pages 2915–2921, 2017.

[48] Wei Wang, Ryan Kennedy, David Lazer, and Naren Ramakrishnan. Growing pains
for global monitoring of societal events. Science, 353(6307):1502–1503, 2016.

[49] Tingmin Wu, Shigang Liu, Jun Zhang, and Yang Xiang. Twitter spam detection
based on deep learning. In Proceedings of the Australasian Computer Science Week
Multiconference, ACSW ’17, pages 3:1–3:8, New York, NY, USA, 2017. ACM.

[50] Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and Eduard Hovy.
Hierarchical attention networks for document classification. In Proceedings of the
2016 Conference of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies, pages 1480–1489, San Diego,
California, June 2016. Association for Computational Linguistics.

[51] SHI Yong-feng and Zhao Yan-ping. Comparison of text categorization algorithms.
Wuhan university Journal of natural sciences, 9(5):798–804, 2004.

[52] Yin Zhang, Rong Jin, and Zhi-Hua Zhou. Understanding bag-of-words model: a
statistical framework. International Journal of Machine Learning and Cybernetics,
1(1-4):43–52, 2010.

[53] Zheng Zhu. Improving search engines via classification. University of London, 2011.

41

Appendix A

Neural Network Architectures

Figure A.1: Context-agnostic Model A Architecture.

Figure A.2: Context-agnostic Model A2 Architecture.

42

Figure A.3: Context-agnostic Model B Architecture.

Figure A.4: Context-agnostic Model B2 Architecture.

Figure A.5: Context-agnostic Model C Architecture.

43

Figure A.6: Context-agnostic Model D Architecture.

Figure A.7: Context-dependent Model E Architecture.

Figure A.8: Context-dependent Model F Architecture.

44

Figure A.9: Context-dependent Model G Architecture.

Figure A.10: Context-dependent Model H Architecture.

45

Appendix B

Dataset

Non-Event Event
Training Set 2,472 (70%) 1,053 (30%)

Validation Set 268 (67%) 130 (33%)
Test Set 320 (73%) 116 (27%)

Total Dataset 3,060 (70%) 1,299 (30%)

Table B.1: The ratios of event and non-event labels over the sentences across different
subsets and in the total dataset.

Maximum Sentence Lengths Average Sentence Lengths
Training Set 105 24

Validation Set 97 24
Test Set 95 24

Total Dataset 105 24

Table B.2: Maximum and average sentence lengths based on tokens across different
subsets and in the total dataset.

46

