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ABSTRACT
The premise of entity retrieval is to better answer search queries
by returning specific entities instead of documents. Many queries
mention particular entities; recognizing and linking them to the cor-
responding entry in a knowledge base is known as the task of entity
linking in queries. In this paper we make a first attempt at bring-
ing together these two, i.e., leveraging entity annotations of queries
in the entity retrieval model. We introduce a new probabilistic
component and show how it can be applied on top of any term-
based entity retrieval model that can be emulated in the Markov
Random Field framework, including language models, sequential
dependence models, as well as their fielded variations. Using a
standard entity retrieval test collection, we show that our extension
brings consistent improvements over all baseline methods, includ-
ing the current state-of-the-art. We further show that our extension
is robust against parameter settings.

CCS Concepts
•Information systems→ Retrieval models and ranking;

Keywords
Entity retrieval; entity linking; semistructured retrieval

1. INTRODUCTION
The past decade has witnessed an emergence of entity-oriented

information access technology [30]. Among these are two main
tasks that have been extensively addressed: (i) answering infor-
mation needs with specific entities, a problem referred to as en-
tity retrieval [7, 25, 35, 36, 38, 46], and (ii) identifying and dis-
ambiguating entities in text, a process known as entity linking [8,
19, 22]. Both these tasks represent key building blocks for seman-
tic search [30] and are typically backed by a large-scale knowl-
edge base. Despite this common ground, the two tasks have so
far been studied mostly on their own, as standalone problems. We
say mostly, as entity ranking, to a limited extent, has already met
entity linking: most entity linking approaches involve an entity re-
trieval component for collecting candidate entities for a given text
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segment, see, e.g., [8, 19, 22]. The other direction, utilizing en-
tity linking for entity retrieval, to the best of our knowledge, has
not been explored yet. This study is a first attempt at bridging this
gap by performing entity linking on search queries and using the
resulting annotations to improve entity retrieval.

It has been shown in prior work that entity retrieval can be im-
proved by leveraging semantic annotations of the query, such as tar-
get entity types or related entities, see, e.g., [4, 10, 24, 39]. These
studies, using the TREC Entity [3] and INEX-XER [17] bench-
marking platforms, assume that semantic annotations are provided
as part of the definition of the information need, i.e., complement
the keyword query. Further, these test suites comprise a homo-
geneous set of queries, where all queries are of the same general
type or even follow some predefined template (e.g., input entity,
target type, and required relation for the related entity finding task
at TREC [3]). In this work, we use a heterogeneous query set, rang-
ing from short keyword queries to natural language questions, and
obtain entity annotations automatically. It is further worth pointing
out that virtually all existing work is limited to term-based repre-
sentation of entities. A few studies stand as exceptions, but those
address the entity ranking task in some specific flavor, such as list
completion [11], or focus on a particular property of entities, like
types [4]. Our approach, on the other hand, considers both term-
and entity-based representations of entities for general-purpose en-
tity retrieval; see Figure 1.

It is worth relating our efforts to the large body of prior work
that has shown that leveraging information about entity annotations
of queries can improve document retrieval performance [9, 16, 27,
28, 43, 44]. Importantly, this task is very different from ours: we
search for entities in a (manually curated) knowledge base where
entities are first-class citizens. This stands in contrast with doc-
ument retrieval, where the entity annotations are a result of some
automated process, which always involves a degree of uncertainty.
Not only the task, but the techniques used for utilizing entity anno-
tations are also different; in document retrieval entities are typically
used for query expansion or as simple features in a learning-to-rank
framework (see §2.3). We, on the other hand, represent and match
entities directly as a separate component in the retrieval model.

Against this background, the main research question driving our
work is this: What is a theoretically sound way of extending term-
based entity retrieval models with the capability of leveraging linked
entities in the query? To address this question, we introduce (i) a
new component for matching entity annotations of the query with
entity relationships recorded in a knowledge base and (ii) a general
framework for leveraging this component into the term-based mod-
els. Our framework is based on the Markov Random Field (MRF)
model [31]. There are several reasons for this particular choice of
framework, including its solid theoretical foundations, good em-
pirical performance, the fact that it can encompass a number of
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<rdfs:label>: 
    Ann Dunham

<dbo:abstract>: 
    Stanley Ann Dunham, the mother of 
         Barack Obama, was an American 
         anthropologist who …

<dbo:birthPlace>: 
     [ <Honolulu>, <Hawaii> ]

<dbo:child>: 
    <Barack_Obama>

<dbo:wikiPageWikiLink>:
    [ <United_States>, 
           <Family_of_Barack_Obama>, …]

<Barack_Obama>

Annotations:

barack  obama  parents

Entity-based representation D̂̂D

Term-based representation DDKnowledge base entry 
for ANN DUNHAM

term-based
matching

entity-based
matching

entity linking

<dbo:birthPlace>:  [<Honolulu>,
                                        <Hawaii> ]
<dbo:child>:       <Barack_Obama>
<dbo:wikiPageWikiLink>:
                   [ <United_States>,
                                           <Family_of_Barack_Obama>, …]

Query terms:     
<rdfs:label>:         Ann Dunham
<dbo:abstract>:     Stanley Ann Dunham the mother 
                                     Barack Obama, was an American 
                                     anthropologist who …
<dbo:birthPlace>: Honolulu Hawaii …
<dbo:child>:            Barack Obama
<dbo:wikiPageWikiLink>:
                 United States Family Barack Obama

Figure 1: Demonstration of term- and entity-based representation of entities. The query terms match against the term-based rep-
resentation of entity ANN DUNHAM, while the entity annotations of the queries match against the entity-based representation. The
dashed parts indicate the novel elements of our work.

existing retrieval models, and last but not least, the current state-of-
the-art in ad-hoc entity retrieval is also based on MRF [46]. Within
this framework, we introduce a new component for matching the
linked entities from the query. This component, termed ELR (for
“Entity Linking incorporated Retrieval”), may be seen as an exten-
sion that can be applied on top of any text-based retrieval model
that can be instantiated in the MRF framework. Entity matches
are facilitated by an additional entity-based representation that pre-
serves entity relationships as recorded in the knowledge base; see
the block denoted with D̂ in Figure 1. We address a number of tech-
nical and modeling issues that stem from the differences between
terms and entities, including the spareness of entity-based repre-
sentations compared to term-based ones, varying number of entity
annotations per query, dealing with uncertainties involved with en-
tity linking, and mapping of entities to fields. We conduct experi-
ments on a test collection consisting of close to 500 heterogeneous
queries and show that our model can consistently and significantly
improve upon standard language models [45], semi-structured [25],
and term-dependence models [31, 46], and outperforms the current
state-of-the-art on ad-hoc entity retrieval by over 6% in terms of
MAP. In addition, we demonstrate its robustness against parameter
setting and entity linking configuration.

The resources developed within this paper are made publicly
available at http://bit.ly/ictir2016-elr.

2. RELATED WORK
Our work falls in the intersection of entity retrieval, entity link-

ing, and exploiting query annotation in retrieval.

2.1 Entity retrieval
One main theme in entity retrieval research concerns the repre-

sentation of entities; once a term-based representation is created,
entities can be ranked using traditional retrieval models, much like
documents. Early work, especially in the context of expert search,
obtains such representations by considering mentions of the given
entity across the document collection [2, 4]. The INEX 2007-2009
Entity Retrieval track (INEX-XER) [17, 18] studies entity retrieval
in Wikipedia, while the INEX 2012 Linked Data track goes one
step further and considers Wikipedia articles together with RDF
properties from the DBpedia and YAGO2 knowledge bases [42].
Much of the recent work represents entities as fielded documents,
extracted from a knowledge base [1, 7, 46] or from multiple in-
formation sources [20]. In this work, we introduce a new repre-

sentation layer, referred to as entity-based representation, based on
entity relationships stored in the knowledge base.

Entity retrieval models can be categorized into two main groups:
semistructured retrieval models [1, 36, 46] and learning-to-rank ap-
proaches [20, 41] . Our focus in this paper is on the first category,
where fielded representations of entities are ranked using fielded
variations of standard document retrieval models, e.g., BM25F [40]
or the mixture of language models [37]. This is indeed the pre-
dominant approach for ad-hoc entity retrieval [1, 7, 36]. In a re-
cent effort, Zhiltsov et al. [46] extend the Sequential Dependence
Model [31] to multi-field representation of entities. Within this
context, the choice of fields and estimation of field weights remain
a challenge. Our work also addresses these challenges by using a
principled and parameter-free estimation method [25].

Entity retrieval has also been explored in the context of specific
tasks, such as list completion at INEX-XER [17, 18, 39] or related
entity finding at the TREC Entity track [3, 5]. In both these cases,
types or entities are provided as part of the topic definition. Our
approach obtains the entity annotations for queries automatically.

2.2 Entity linking
Early work on entity linking has focused on long texts, based

on contextual and semantic similarities between a document and
candidate entities [13, 15, 26, 33, 34]. More recently, the focus has
slightly shifted towards annotating short texts such as tweets and
queries [8, 19, 21, 29]. Entity linking for short texts is challenging,
mainly because of the lack of context. In case of queries, there
are additional efficiency considerations, as entity linking needs to
be performed on-the-fly. TAGME is one of the early systems that
addresses entity linking in short texts and has received due attention
since [23]. It is one of the best performing systems, both in terms of
efficiency and effectiveness [12, 14], and also offers a public API.

The problem of entity linking in queries has recently been iden-
tified as a separate task, different from conventional entity linking
for short/long texts [12, 22]. The difference lies in the number of
entities that can be assigned to a mention: for short/long texts a
single entity is ought to be returned for each mention, while en-
tity linking in queries can associate multiple entities with a single
mention, if the ambiguity cannot be resolved. Hasibi et al. [22] dis-
cuss that entity linking in queries should be presented as a set of
entity linking interpretations, where each interpretation consists of
semantically related entities. For our approach, we are interested
in the annotation of individual entities and are not concerned with
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entity linking interpretations. Therefore, any type of entity link-
ing systems can be used with our approach. Due to reproducibility
considerations [23], we employ the TAGME API as a black-box en-
tity linker and incorporate the resulting annotations into the entity
retrieval system.

2.3 Exploiting query annotations in retrieval
Exploiting semantic annotations of queries for various retrieval

tasks has attracted due attention over the recent years. Examples
include the INEX and TREC entity benchmarking efforts as al-
ready discussed in §2.1. Much of the recent work has focused on
incorporating entity-related information to improve document re-
trieval [9, 16, 27, 28, 43, 44]. There are three major differences be-
tween this line of work and ours. First and foremost, the task is dif-
ferent; the referred approaches address ad-hoc document retrieval,
while we search for entities in a knowledge base. Second, the way
entity annotations are utilized is different; we aim to directly incor-
porate entity annotations into the retrieval model, while existing ap-
proaches either employ query expansion techniques [9, 16, 27, 44]
or operate in a latent entity space [28, 43]. Finally, our approach
requires only the identifiers of the linked entities, thereby making
it a generic and effective model (also in terms of implementation),
while others rely on additional entity-related information from the
knowledge base.

Schuhmacher et al. [41] address a variant of the ad-hoc entity
ranking task for informational queries, which is “close in spirit to
ad-hoc document search” [41]. Even though this task is different
from ours, there are some similarities. They also leverage entity
annotations of queries, but they do so in a learning-to-rank frame-
work by introducing two binary features: whether the query entity
(i) contains or (ii) is related to the candidate entity or not. The
findings on the merits of these features are somewhat inconclusive;
while they are shown to be influential on the Robust04 dataset, they
were less helpful on ClueWeb12 dataset. The conclusiveness of
these results might be further limited by the low number of queries
(25 and 22 for Robust and ClueWeb12, respectively).

3. BACKGROUND
In this section, we describe the Markov Random Field (MRF)

model [31], which is the basis of our proposed approach (follow-
ing in §4). We further discuss two specific variations of the MRF
model: the Sequential Dependence Model [31] in §3.2 and the
Fielded Sequential Dependence Model [46] in §3.3.

3.1 The Markov Random Field model
Markov Random Field models for information retrieval were first

introduced by Metzler and Croft [31] to model the dependencies
between query terms. Given a documentD and a queryQ, the goal
of these models is to compute the joint probability P (Q,D):

P (D|Q) =
P (Q,D)

P (Q)

rank
= P (Q,D) (1)

This probability is estimated based on a Markov Random Field,
which is a common practice to compute the joint probabilities of
random variables. For document retrieval, a MRF is defined by a
graph G with nodes consisting of query terms qi and the document
D, and edges representing the dependence between the nodes. The
joint probability over variables of the graph G is computed as:

PΛ(Q,D) =
1

ZΛ

∏
c∈C(G)

ψ(c; Λ),

where C(G) is the set of cliques in G and ψ(c; Λ) = exp[λcf(c)]
is a non-negative potential function, parametrized by the weight λc

and the feature function f(c). The parameter ZΛ serves as a nor-
malization factor, which is generally ignored due to computational
infeasibility. Substituting all these elements into Eq. (1), the final
ranking function becomes:

P (D|Q)
rank
=

∑
c∈C(G)

λcf(c). (2)

This ranking function provides a solid theoretical basis for a wide
spectrum of retrieval models: from traditional unigram-based mod-
els to more sophisticated ones involving n-grams as well as addi-
tional task- or domain-specific features [6, 39]. To build a ranking
function, all one needs to do is to define the graph structure and the
potential functions over the graph cliques.

3.2 Sequential Dependence Model
The Sequential Dependence Model (SDM) is a popular MRF-

based retrieval model, which provides a good balance between re-
trieval effectiveness and efficiency [31]. In the underlying graph of
this model, only adjacent query terms are connected to each other,
meaning that query terms are sequentially dependent on each other;
i.e., the white nodes in Figure 2. Under this assumption, the poten-
tial functions are defined for two types of cliques: (i) 2-cliques
involving a query term and the document, (ii) cliques containing
two contiguous terms and the document. The potential function for
the first type of cliques is:

ψ(qi, D; Λ) = exp[λT fT (qi, D)], (3)

where fT (qi, D) is the feature function for the query term qi and
the document D. There are two possibilities for the second type
of cliques (two terms): either the terms occur contiguously in the
query or they do not. These two cases make up the potential func-
tions for ordered and unordered matches, and are denoted by theO
and U subscripts, respectively:

ψ(qi, qi+1, D; Λ) = exp[λOfO(qi, qi+1, D)+

λUfU (qi, qi+1, D)]. (4)

By substituting the two potential functions ψ(qi, D; Λ) in Eq. (3)
and ψ(qi, qi+1, D; Λ) in Eq. (4) into Eq. (2), and factoring out the
λ parameters, the SDM ranking function becomes:

P (D|Q)
rank
= λT

∑
qi∈Q

fT (qi, D)+

λO

∑
qi,qi+1∈Q

fO(qi, qi+1, D)+

λU

∑
qi,qi+1∈Q

fU (qi, qi+1, D), (5)

where the parameters should meet the constraint of λT + λO +
λU = 1. The specific feature functions are set as follows:

fT (qi, D) = log[
tfqi,D + µ

cfqi
|C|

|D|+ µ
] (6)

fO(qi, qi+1, D) = log[
tf#1(qi,qi+1),D + µ

cf#1(qi,qi+1)

|C|

|D|+ µ
] (7)

fU (qi, qi+1, D) = log[
tf#uwN(qi,qi+1),D + µ

cf#uwN(qi,qi+1)

|C|

|D|+ µ
],

(8)

where tfD is the frequency of the term(s) in the document D and
cf denotes the total number of occurrences of the term(s) in the
entire collection. The function #1(qi, qi+1) searches for the exact



q1q1 q2q2 q3q3

DD

e1e1

barack obama parents BARACK OBAMA

Figure 2: Graphical representation of the ELR model for the
query “barack obama parents”. Here, all the terms are sequen-
tially dependent and the phase "barack obama" is linked to the
entity BARACK OBAMA.

match of the phrase qi, qi+1, while #uwN(qi, qi+1) counts the co-
occurrence of terms within a window of N words (where N is set
to 8 based on [31]). The parameter µ is the Dirichlet prior, which
is taken to be the average document length in the collection.

Putting all these together, SDM is basically the weighted sum
of language model scores obtained from three sources: (i) query
terms, (ii) exact match of query bigrams, and (iii) unordered match
of query bigrams. Our approach in §4 employs the same sequential
dependence assumption that SDM does.

3.3 Fielded Sequential Dependence Model
The Fielded Sequential Dependence Model (FSDM) [46] ex-

tends the SDM model to support structured document retrieval. In
essence, FSDM replaces the document language model of feature
functions (Eqs. (6), (7), and (8)) with those of the Mixture of Lan-
guage Models (MLM) [37]. Given a fielded representation of a
document (e.g., title, body, anchors, metadata, etc. in the context of
web document retrieval), MLM computes a language model prob-
ability for each field and then takes a linear combination of these
field-level models. Hence, FSDM assumes that a separate language
model is built for each document field and then computes the fea-
ture functions based on fields f ∈ F , with F being the universe of
fields. For individual terms, the feature function becomes:

fT (qi, D) = log
∑
f

wT
f

tfqi,Df + µf
cfqi,f
|Cf |

|Df |+ µf
, (9)

while ordered and unordered bigrams are estimated as:

fO(qi, qi+1, D) =

log
∑
f

wO
f

tf#1(qi,qi+1),Df
+ µf

cf#1(qi,qi+1),f

|Cf |

|Df |+ µf
(10)

fU (qi, qi+1, D) =

log
∑
f

wU
f

tf#uwN(qi,qi+1),Df
+ µf

cf#uwN(qi,qi+1),f

|Cf |

|Df |+ µf
.

(11)

The parameters wf are the weights for each field, which are set to
be non-negative with the constraint

∑
f wf = 1. Zhiltsov et al.

[46] trained both the field weights (wf ) and the feature function
weights (λT , λO, λU in Eq. (5)) in two stages using the Coordinate
Ascent algorithm [32].

4. THE ELR APPROACH
This section presents our approach for incorporating entity link-

ing into entity retrieval. We start by introducing our general MRF-

based framework in §4.1, and continue with describing the feature
functions in §4.2 and fielded representation of entities in §4.3.

4.1 Model
Our Entity Linking incorporated Retrieval (ELR) approach is an

extension of the MRF framework for incorporating entity annota-
tions into the retrieval model. We note, without detailed elabora-
tion, that ELR is applicable to a wide range of retrieval problems
where documents, or document-based representations of objects,
are to be ranked, and entity annotations are available to be lever-
aged in the matching of documents and queries. Our main focus in
this paper, however, is limited to entity retrieval; entity annotations
are an integral part of the representation here, cf. Figure 1. (This
is unlike to traditional document retrieval, where documents would
need to be annotated by an automated process that is prone to er-
rors). To show the generic nature of our approach, and also for the
sake of notational consistency with the previous section, we shall
refer to documents throughout this section. We detail how these
documents are constructed for our particular task, entity retrieval,
in §4.3.

Our interest in this work lies in incorporating entity annotations
and not in creating them. Therefore, entity annotations of the query
are assumed to have been generated by an external entity linking
process, which we treat much like a black box. Formally, given an
input query Q = q1...qn, the set of linked entities is denoted by
E(Q) = {e1, ..., em}. We do not impose any restrictions on these
annotations, i.e., they may be overlapping and a given query span
might be linked to multiple entities. It might also be that E(Q)
is an empty set. Further, we assume that annotations have confi-
dence scores associated with them. For each entity e ∈ E(Q),
let s(e) denote the confidence score of e, with the constraint of∑

e∈E(Q) s(e) = 1.
The graph underlying our model consists of document, term, and

entity nodes. As shown in Figure 2, we assume that the query terms
are sequentially dependent on each other, while the annotated en-
tities are independent of each other and of the query terms. Based
on this assumption, the potential functions are computed for three
types of cliques: (i) 2-cliques consisting of edges between the doc-
ument and a term node, (ii) 3-cliques consisting of the document
and two term nodes, and (iii) 2-cliques consisting of edges between
the document and an entity node. The potential functions for the
first two types are identical to the SDM model (Eqs. (3) and 4). We
define the potential function for the third clique type as:

ψE(e,D; Λ) = exp[λEfE(e,D)],

where λE is a free parameter and fE(e,D) is the feature function
for the entity e and document D (to be defined in §4.2). By substi-
tuting all feature functions into Eq. (2), the MRF ranking function
becomes:

P (D|Q)
rank
=

∑
qi∈Q

λT fT (qi, D)+

∑
qi,qi+1∈Q

λOfO(qi, qi+1, D)+

∑
qi,qi+1∈Q

λUfU (qi, qi+1, D)+

∑
e∈E(Q)

λEfE(e,D).

This model introduces an additional parameter for weighing the im-
portance of entity annotations, λE , on top of the three parameters
(λ{T,O,U}) from the SDM model (cf. §3.2). There is a crucial dif-
ference between entity-based and term-based matches with regards



to the λ parameters. The number of cliques for term-based matches
is proportional to the length of the query (|Q| for unigrams and
|Q| − 1 for ordered and unordered bigrams), which makes them
compatible (directly comparable) with each other, irrespective of
the length of the query. Therefore, in SDM, λ{T,O,U} are taken out
of the summations (cf. Eq. (5)) and can be trained without having to
worry about query length normalization. The parameter λE , how-
ever, cannot be treated the same manner for two reasons. Firstly,
the number of annotated entities for each query varies and it is inde-
pendent of the length of the query. For example, a long natural lan-
guage query might be annotated with a single entity, while shorter
queries are often linked to several entities, due to their ambiguity.
Secondly, we need to deal with varying levels of uncertainty that
is involved with entity annotations of the query. The confidence
scores associated with the annotations, which are generated by the
entity linking process, should be integrated into the retrieval model.

To address the above issues, we re-write the λ parameters as a
parameterized function over each clique and define them as:

λT (qi) = λT
1

|Q| ,

λO(qi, qi+1) = λO
1

|Q| − 1
,

λU (qi, qi+1) = λU
1

|Q| − 1
,

λE(e) = λEs(e),

where |Q| is the query length and s(e) is the confidence score of en-
tity e obtained from the entity linking step. Considering this para-
metric form of the λ parameters, our final ranking function takes
the following form:

P (D|Q)
rank
= λT

∑
qi∈Q

1

|Q|fT (qi, D)+

λO

∑
qi,qi+1∈Q

1

|Q| − 1
fO(qi, qi+1, D)+

λU

∑
qi,qi+1∈Q

1

|Q| − 1
fU (qi, qi+1, D)+

λE

∑
e∈E(Q)

s(e)fE(e,D), (12)

where the free parameters λ are placed under the constraint of λT +
λO + λU + λE = 1. This model ensures that the scores for the
different type of matches (i.e., term, ordered window, unordered
window, and entities) are normalized and the λ parameters, which
are to be trained, are not influenced by the length of the query or
by the number of linked entities. In addition, it provides us with
a general ranking framework that can encompass various retrieval
models. If the λO and λU parameters are set to zero, the model
is an extension of unigram based models, such as LM and MLM.
Otherwise, it extends SDM and FSDM. We also note that due to
the normalizations applied to the different set of matches, the full
dependence variant of MRF model [31] could also be instantiated
in our framework; this, however, is outside the scope of this study.

4.2 Feature functions
Feature functions form an essential part of MRF-based models.

We now discuss the estimation of these for the ELR model. For all
feature functions, we use a fielded document representation of en-
tities, as it is a common and effective approach for entity retrieval,
see, e.g., [1, 7, 20, 35, 46]. The first three feature functions in
Eq. (12), fT , fO , and fU , are computed as defined in Eqs. (9), (10),
and (11), respectively.

Let us then turn to defining the function fE(e,D) in Eq. (12),
which is a novel feature introduced by our ELR model. This func-
tion measures the goodness of the match between an entity e linked
in the query and a document D. These matches are facilitated by
an entity-based representation of documents. For each document
D an entity-based representation D̂ is obtained by ignoring doc-
ument terms and considering only entities. In the context of our
work, the entity represented by document D stands in typed rela-
tionships with a number of other entities, as specified in the knowl-
edge base. The various relationships are modeled as fields in the
document. Consider the example in Figure 1, where the document
represents the entity ANN DUNHAM, who is being linked to the en-
tity BARACK OBAMA (via the relationship <dbo:child>). This
entity-based representation differs from the traditional term-based
representation in at least two important ways. Firstly, each entity
appears at most once in each document field. Secondly, if an entity
appears in a field, then it should be considered a match, irrespec-
tive of what other entities may appear in that field. Consider again
the example in Figure 1, where the field <dbo:birthplace>
has multiple values, HONOLULU and HAWAII. Then, if either of
these entities is linked in the query, that should account for a per-
fect match against this particular field, irrespective of how many
other locations are present in that field. Motivated by these obser-
vations, we define the feature function fE as:

fE(e,D) = log
∑
f∈F

wE
f

[
(1− α)tf{0,1}(e,D̂f ) + α

dfe,f
dff

]
, (13)

where the linear interpolation implements the Jelinek-Mercer smooth-
ing method, with α set to 0.1, and tf{0,1}(e,D̂f ) indicates whether

the entity e is present in the document field D̂f or not. For the back-
ground model, we employ the notion of document frequency as fol-
lows: dfe,f = |{D̂|e ∈ D̂f}| is the total number of documents that
contain the entity e in field f and df(f) = |{D̂|D̂f 6= ∅}| is the
number of documents with a non-empty field f .

All of the feature functions fT , fO , fU , and fE involve free pa-
rameters wf , which control the field weights. Zhiltsov et al. [46]
set these type of parameters using a learning algorithm, which leads
to a large number of parameters to be trained (the number of fea-
ture functions times the number of fields). Instead, we employ
a parameter-free estimation of field weights, using field mapping
probabilities, introduced in the Probabilistic Retrieval Model for
Semistructured Data (PRMS) [25]. This probability infers the im-
portance of each field, with respect to a given query term, based on
collection statistics of that term. Specifically, the probability of a
field f , from the universe of fields F , is computed with respect to
a given term t as follows:

P (f |t) =
P (t|f)P (f)∑

f ′∈F P (t|f ′)P (f ′)
. (14)

Here, P (f) is the prior probability of field f , which is set pro-
portional to the frequency of the field (across all documents in the
collection), and P (t|f) is estimated by dividing the number of oc-
currences of term t in field f by the sum of term counts in f across
the whole collection. We compute the probability P (f |t) for all
query terms, ordered and unordered bigrams, and use the resulting
values for the weights wT

f , wO
f , and wU

f (used in Eqs. (9)-(11)),
respectively. The weights wE

f (used in Eq. (13)) are also estimated
using Eq. (14), but this time we compute this probability for entities
instead of terms (i.e., t is replaced with e).

Employing the mapping probability P (f |.) instead of free pa-
rameters wf [46] has three advantages. First, the field mapping
probability specifies field importance for each query term (or bi-
gram) individually, while the wf parameters are the same for all



“finland” FINLAND
Field name Mapping prob. Field name Mapping prob.

<dcterms:subject> 0.210 <dbo:country> 0.223
<dbo:wikiPageWikiLink> 0.178 <dbo:wikiPageWikiLink> 0.201
types 0.168 contents 0.189
contents 0.113 <dbo:birthPlace> 0.170
<rdfs:comment> 0.089 <dbo:hometown> 0.053
<dbo:abstract> 0.070 <dbo:location> 0.047
<rdfs:label> 0.069 <dbo:nationality> 0.041
names 0.059 <dbo:deathPlace> 0.034
<foaf:isPrimaryTopicOf> 0.040 <dbo:locationCountry> 0.028
yago:<rdf:type> 0.001 <dbo:ground> 0.0129

Table 1: Selected fields with the corresponding mapping probabilities for the term “finland” and the entity FINLAND.

query terms (or bigrams). Second, the number of free parameters
in the feature functions fT , fO , fU , and fE reduces from 4∗ |F| to
zero. Hence, the final model is more robust and can be employed
in various settings, without risking overfitting. Lastly and most im-
portantly, estimating the field weights this way allows us to have a
query-specific selection of fields, depending on the linked entity, as
opposed to having pre-trained (fixed) field weights.

4.3 Fielded representation of entities
We now detail how the term-based and entity-based representa-

tion are obtained for entities, from the knowledge base entry (i.e.,
subject-predicate-object triples) describing the entity. One of the
challenges of working with a fielded document-based representa-
tion of entities is the appropriate selection of fields. While grouping
SPO triples by predicates and mapping each predicate to a separate
document field is straightforward, retrieval can become highly in-
efficient because of the large number of fields [35]. Previous work
has suggested a number of solutions to alleviate this problem by
reducing the number of fields, which can be summarized under two
main categories: (i) selecting a subset of fields that are considered
and (ii) grouping fields together into a handful of predefined cat-
egories. When using the first approach, predicates are commonly
ordered by frequency and a rank-based cutoff is applied, e.g., top
1000 in [1]. There are two choices for assigning the field weights
in this setting: to simply use uniform values for all fields or to em-
ploy some estimation technique (such as the field mapping proba-
bilities in the PRMS model) as training is generally infeasible due
to the large number of fields. Examples of the second technique,
referred to as “predicate folding” in [35], include grouping fields
into a handful of predetermined categories based on type [35, 46]
or manually determined importance [7]. It has been shown in [36]
that it is possible to achieve solid performance even with as few as
two fields, “title” and “content.” One main advantage of predicate
folding is that the estimation of field weights becomes tractable.
The disadvantage is that a large part of the semantics associated
with the individual predicates is discarded.

In this work we combine these two strategies to get the best of
both approaches. We employ predicate folding for three designated
fields: names, types, and content (see §5.1). In addition, we con-
sider all fields, which are not included in names or types, on their
own. From this combined set, we then select the top-N most fre-
quent fields across the whole knowledge base and use them for the
term-based entity representation.

The entity-based representation requires a different field selec-
tion procedure from the above, as entities (SPO triples with an URI
value as object) occur less often and follow an entirely different pat-
tern than terms. For instance, the entity FINLAND mostly occurs in
the <dbo:country> and <dbo: birthPlace> fields, while

the entity ANCIENT ROMAN ARCHITECTURE often appears in the
<dbo:architecturalStyle> field. This illustrates that it is
not desirable to have the same (and fixed) set of fields for all en-
tities, but field selection should be performed on an entity-specific
manner. Therefore, for each entity, we select the top-N fields, from
the entity-based representations, that the entity occurs in. As this
computation can be performed offline, it does not negatively im-
pact on the efficiency of retrieval. Table 1 shows an excerpt of the
mapping probability distribution for a given term and entity.

5. EXPERIMENTAL SETUP
This section presents our experimental setup, including the data

set (§5.1), field selection (§5.2), parameter settings (§5.3), and how
entity linking is performed (§5.4).

5.1 Data
We use DBpedia version 3.9 as our knowledge base along with

the DBpedia-entity test collection [1].

Indices. For our experiments, we created two fielded indices from
subject-predicate-object triples: a term-based index, where all en-
tities (URI objects) are resolved to terms, and an entity-based in-
dex, where only URI objects are kept. The former index is used
to compute the unigram and bigram term probabilities (Eqs. (9)-
(11)), while the latter is employed for the entity probability compu-
tations (Eq. (13)). We built the indices using Lucene and made use
of SpanNearQuery to get the statistics for ordered and unordered
phrases. Our indices are confined to entities having a name and a
short abstract (i.e. fields <rdfs:label> and <rdfs:comment>),
resulting in a total of 3,984,580 entities. They contain the top-1000
most frequent DBpedia predicates as fields, together with three
other fields: (i) the names field, which is the constitution of en-
tity predicates <rdfs:label>, <foaf:name>, and redirected
entities; (ii) the types field, which contains <rdf:type> and at-
tribute names ending in “subject”; (iii) the contents field, which
holds the contents of all entity fields except entity links in other
languages (<owl:sameAs>). In the term-based index, terms are
lowercased and stopped using the default Lucene stopwords list,
and all URIs are replaced with the name of the corresponding en-
tity. In the entity-based index, only URIs are indexed and all literal
objects are ignored. In addition, the URI of each entity itself is also
added to the contents field in the entity-based index.

Queries. We evaluate the effectiveness of our models using the
DBpedia-entity collection [1], which comprises 485 queries from a
number of entity retrieval benchmarking campaigns. Following [6],
queries are stopped using a handful of stop patterns (“which”, “who”,



Query subset #queries Avg. len #rel

SemSearch ES 130 2.7 1115
ListSearch 115 5.6 2390
INEX_LD 100 4.8 3680
QALD-2 140 7.9 5773

Total 485 5.3 12958

Table 2: Query subsets of the DBpedia-entity test collection.

“what”, “where”, “give me”, “show me”) to improve entity linking
and initial retrieval performance. We perform stopwords removal
after the entity linking step, using the default Lucene stopwords
list. We break down retrieval results according to the four cate-
gories suggested by Zhiltsov et al. [46]:

• SemSearch ES: Keyword queries targeting specific entities,
which are often ambiguous (e.g., “madrid,” “hugh downs”).

• ListSearch: Combination of INEX-XER, SemSearch LS,
and TREC Entity queries, targeting a list of entities that match
a certain criteria (e.g., “Airports in Germany,” “the first 13
american states”).

• INEX_LD: General keyword queries, involving a mixture of
names, types, relations, and attributes (e.g., “Eiffel,” “viet-
nam war movie,” “gallo roman architecture in paris”).

• QALD-2: Natural language queries (e.g., “which country
does the creator of miffy come from,” “give me all female
russian astronauts”).

Table 2 provides descriptive statistics on these query subsets.

5.2 Field selection
The number of fields used in the term-based representation is a

parameter shared by all but two of the evaluated models (single-
field LM and SDM). We examined retrieval performance against a
varying number of fields (n = 10i, i = 0, 1, 2, 3), see Figure 3.
Note that fields are ordered by frequency. It is clear from the figure
that the best results are obtained when the top 10 most frequent
fields are used. We used this setting in all our experiments, unless
stated otherwise. For consistency, we also used the same setting,
i.e., top 10 fields, for the entity-based representation.

5.3 Parameter setting
This section describes the parameter settings used in our exper-

iments. The Dirichlet prior µ in language models is set to the av-
erage document/field length across the collection. The unordered
window size N in Eqs. (8) and (11) is chosen to be 8, as suggested
in [31, 46]. To estimate the λ parameters involved in SDM, FSDM,
and our approach, we employ the Coordinate Ascent (CA) algo-
rithm [32] and directly optimize Mean Average Precision (MAP).
CA is a commonly used optimization technique, which iteratively
optimizes a single parameter while holding all other parameters
fixed. We make use of the CA implementation provided in the
RankLib framework and set the number of random restarts to 3.
Following [46], we estimate the λ parameters of SDM, FSDM*,
and ELR-based approaches using 5-fold cross validation for each
of the 4 query subsets separately. We note that Zhiltsov et al. [46]
train both the λ and w parameters (Eq. (5)-(11)) for the FSDM
model. As we use different entity representation from [46] (with 10
as opposed to 5 fields), training parameters in this manner would
result in cross-validation of 33 parameters for each query subset,
which would be prone to overfitting. We avoid this issue by em-
ploying the PRMS field mapping probability for field weights w
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Figure 3: Effect of varying number of fields on MAP.

(i.e., Eq. (14)). Therefore, our implementation of FSDM slightly
deviates from the original paper [46]; in acknowledgement of this
distinction, we will refer to our implementation as FSDM*.

For all experiments, we employ a two stage retrieval method:
first an initial set of top 1000 results is retrieved using Lucene’s
default search settings, then this set is re-ranked with the specific
retrieval model (using an in-house implementation). Evaluation
scores are reported on the top 100 results. To perform cross-valida-
tion, we randomly create train and test folds from the initial result
set, and use the same folds throughout all the experiments. To mea-
sure statistical significance we employ a two-tailed paired t-test and
denote differences at the 0.01 and 0.05 levels using the N and M sym-
bols, respectively.

5.4 Entity linking
Entity linking is a key component of the ELR approach. For the

purpose of reproducibility, all the entity annotations in this work
are obtained using an open source entity linker, TAGME [19], ac-
cessed through its RESTful API.1 TAGME is one of the best per-
forming entity linkers for short queries [12, 14]. As suggested in
the API documentation, we use the default threshold 0.1 in our ex-
periments; we analyze the effect of the threshold parameter in §6.5.

6. RESULTS AND ANALYSIS
We begin by enumerating our research questions, then present a

series of experiments conducted to answer them.

6.1 Research questions
We address the following research questions:

• RQ1: Can entity retrieval performance be improved by in-
corporating entity annotations of the query? (§6.2)

• RQ2: How are the different query subsets impacted by ELR?
(§6.3)

• RQ3: How robust is our method with respect to parameter
settings? (§6.4)

• RQ4: What is the impact of the entity linking component on
end-to-end performance? (§6.5)

6.2 Overall performance
To find out whether entity linking in queries can improve en-

tity retrieval performance (RQ1), we compare a number of entity
retrieval approaches proposed in the literature. The first four (LM,

1http://tagme.di.unipi.it/

http://tagme.di.unipi.it/


Model SemSearch ES ListSearch INEX-LD QALD-2
MAP P@10 MAP P@10 MAP P@10 MAP P@10

LM .2485 .2008 .1529 .1939 .1129 .2210 .1132 .0729
LM + ELR .2531M(+1.8%) .2008 .1688N(+10.4%) .2096 .1244N(+10.2%) .2330 .1241N(+9.6%) .0836N

PRMS .3517 .2685 .1722 .2270 .1184 .2240 .1180 .0893
PRMS + ELR .3573 (+1.6%) .2700 .1956N(+14.1%) .2417 .1303N(+10%) .2330 .1343N(+13.8%) .1064N

SDM .2669 .2108 .1553 .1948 .1167 .2250 .1369 .0750
SDM + ELR .2641 (-1%) .2115 .1689M(+8.8%) .2174N .1264N(+8.3%) .2340 .1472M(+7.5%) .0857

FSDM* .3563 .2692 .1777 .2165 .1261 .2290 .1364 .0921
FSDM* + ELR .3581 (+.5%) .2677 .1973M(+11%) .2391N .1332 (+5.6%) .2330 .1583M(+16%) .1086N

Table 4: Results of ELR approach on different query types. Significance is tested against the line above; the numbers in parentheses
show the relative improvements, in terms of MAP.

Model MAP P@10

LM 0.1588 0.1664
MLM-tc 0.1821 0.1786
MLM-all 0.1940 0.1965
PRMS 0.1936 0.1977
SDM 0.1719 0.1707
FSDM* 0.2030 0.1973

LM + ELR 0.1693N (+6.6%) 0.1757N (+5.6%)
MLM-tc + ELR 0.1937N (+6.4%) 0.1895N (+6.1%)
MLM-all + ELR 0.2082N (+7.3%) 0.2054M (+4.5%)
PRMS + ELR 0.2078N (+7.3%) 0.2085N (+5.5%)
SDM + ELR 0.1794N (+4.4%) 0.1812N (+6.1%)
FSDM* + ELR 0.2159N (+6.3%) 0.2078N (+5.3%)

Table 3: Retrieval results for baseline models (top) and with
ELR applied on top of them (bottom). Significance is tested
against the corresponding baseline model. Best scores are in
boldface.

MLM-tc, MLM-all, and PRMS) are language modeling-based meth-
ods that were introduced as standard baselines for the DBpedia-
entity test collection [1]. The other two (SDM and FSDM) are
taken from [46], the work that reported the best results on this col-
lection so far. Specifically, the baseline models considered are:

• LM: The standard language modeling approach [45], against
the contents field.

• MLM-tc: The Mixture of Language Models [37] with two
fields, names and contents, with weights 0.2 and 0.8,
respectively, as suggested in [36].

• MLM-all: The Mixture of Language Models using the top
10 fields with equal weights.

• PRMS: The Probabilistic Retrieval Model for Semistructured
Data [25], using the top 10 fields.

• SDM: The Sequential Dependence Model [31], against the
contents field.

• FSDM*: The Fielded Sequential Dependence Model [46] on
the top 10 fields, with field weights estimated using PRMS.

The top section of Table 3 displays the results of these base-
lines, all implemented from scratch.2 The bottom part of Table 3
2We note the slight differences compared to the numbers reported
in [1] and [46]. One major source of the differences is that we use
a different DBpedia version, v3.9 with the updated DBpedia-entity

shows the results we get by applying ELR on top of these base-
lines. We observe consistent improvements over all baselines; the
relative ranking of models remains the same (LM < SDM < MLM-
tc < MLM-all < PRMS < FSDM*), but their performance is im-
proved by 4.4–7.3% in terms of MAP, and by 4.5–6.1% in terms
of P@10. All improvements are statistically significant. Based on
these results, we answer our first research question positively: en-
tity annotations of the query can indeed improve entity retrieval
performance.

For the analysis that follows later in this section we retain four
of these models: LM, PRMS, SDM, and FSDM*. This selection
enables us to make a meaningful and consistent comparison across
two dimensions: (i) single vs. multiple fields (LM and SDM vs.
PRMS and FSDM*), and (ii) term independence vs. dependence
(LM and PRMS vs. SDM and FSDM*).

6.3 Breakdown by query subsets
How are the different query subsets impacted by ELR (RQ2)?

Intuitively, we expect ELR to improve the effectiveness of queries
that mention entities plus contain some additional terms (e.g., spec-
ifying an attribute or relation). Queries that mention a single entity,
without any modifiers, are less likely to benefit from our approach.

Table 4 provides a breakdown of results by query type. We find
that the biggest improvements are obtained for the ListSearch and
QALD-2 queries (+7.5–16% in terms of MAP and +6.5–19.1% in
terms of P@10). The queries in these sets often seek entities related
to other entities; a lot can be gained here from entity linking. The
INEX-LD queries are also significantly improved by ELR (with the
exception for FSDM*), but the relative improvements are smaller
than for ListSearch and QALD-2 (here, it is +5.6–10.2% for MAP
and +1.7–5.4% for P@10), but still significant in all but one case.
This set is more diverse than the other two and comprises a mixture
of short entity queries, type queries, and long natural language style
queries. Finally, on the SemSearch ES subset, ELR could make a
significant difference only for the weakest baseline, LM. These are
short keyword queries, which are already handled effectively by a
fielded representation (cf. PRMS and FSDM; also note that adding
term dependence does not improve performance).

To understand how much importance is attributed to entity-based
matches, we plot the values of the λ{T,O,U,E} parameters for each

test collection, as opposed to v3.7 (used both in [1] and [46]). Our
MLM-all and PRMS results are better than [1] because we use the
top 10 fields, while top 1000 fields are used in [1] (cf. Figure 3).
Compared to [46], we got higher scores for PRMS and lower ones
for FSDM. The main reason behind this is the different choice of
fields. Furthermore, as explained in §5.3, field weights are trained
for each query subset in [46], while we employ a parameter-free
estimation of field weights based on PRMS.



(a) LM+ELR (b) PRMS+ELR (c) SDM+ELR (d) FSDM*+ELR

Figure 4: Values of the λ parameters (λT : unigrams, λO: ordered bigrams, λU : unordered bigrams, λE: entities) in our experiments,
by the different query subsets (trained using Coordinate Ascent).

query subset in Figure 4. The values are obtained by averaging
the trained parameter values across all folds of the cross-validation
process. We can observe a similar trend across all retrieval meth-
ods: ListSearch and QALD-2 queries are assigned the highest λE

values, INEX-LD gets a somewhat lower but still sizable portion of
the distribution, while for SemSearch ES it bears little importance.

Based on Table 4 and Figure 4, we conclude that different query
types are impacted differently by the ELR method. The results
confirm our hypothesis that ELR can improve complex (ListSearch
and QALD-2) as well as heterogeneous (INEX-LD) query sets,
which involve entity relationships. On the other hand, short key-
word queries, referring to a single, albeit often ambiguous, entity
(SemSearch ES) are mostly unaffected.

6.4 Parameter settings
How sensitive is ELR to the choice of λ parameters (RQ3)? To

answer this question, we compare two configurations: (i) default
parameter settings, and (ii) parameters trained using the CA algo-
rithm. The default parameters are set as follows. For SDM and
FSDM, we follow [31, 32] and set λT = 0.8, λO = 0.1, and
λU = 0.1. For the other models with ELR applied, we set λE to
the single best performing value across the entire query set; that is,
we do not train it separately for the different query subsets, like be-
fore. The resulting configurations are: (i) λT = 0.9 and λE = 0.1
for LM + ELR and PRMS + ELR, and (ii) λT = 0.8, λO = 0.05,
λU = 0.05, and λE = 0.1 for SDM + ELR and FSDM* + ELR.

Table 5 compares retrieval results using default and trained pa-
rameters. Note that LM and PRMS do not involve any parame-
ters, hence the empty cells. We find that the results are robust,
i.e., ELR can improve the performance of term-based models, even
with default parameter values. MAP differences are significant for
all methods, except SDM + ELR. (For that model, the default λE

value is higher than it would be optimal for SemSearch ES queries,
thereby reducing overall retrieval effectiveness.) This experiment
also confirms that our improvements are not a result of overfitting.

6.5 Impact of entity linking
What is the impact of the entity linking component on end-to-end

entity retrieval performance (RQ4)? Entity linking systems typi-
cally involve a threshold parameter that defines the required degree
of certainty for linking entities. This threshold for TAGME ranges
between 0 and 1, where 0 returns the maximum number of enti-
ties and 1 returns no entity. To answer the above research question,
we measure retrieval performance while varying the entity linking
threshold value. Figure 5 reports the results for the best performing
model, FSDM* + ELR, for both trained and default λ parameters.

Model Default params. Trained params.
MAP P@10 MAP P@10

LM 0.1588 0.1664
LM + ELR 0.1668M 0.1724 0.1693N 0.1757N

PRMS 0.1936 0.1977
PRMS + ELR 0.2028N 0.2035 0.2078N 0.2085N

SDM 0.1672 0.1685 0.1719 0.1707
SDM + ELR 0.1721 0.1722 0.1794N 0.1812N

FSDM 0.1969 0.1973 0.2030 0.1973
FSDM + ELR 0.2043N 0.1996 0.2159N 0.2078N

Table 5: Comparison of default vs. trained λ parameters over
all queries. Significance is tested against the line above.

Apart from the small fluctuations in the 0.4–0.6 range, retrieval per-
formance is shown to improve as the entity linking threshold is low-
ered. This observation implies that ELR is robust with respect to
entity linking; considering more entity annotations, even those with
low confidence, improves retrieval performance. The entity linker
currently used allows for the annotation of overlapping entity men-
tions, but it returns a single entity for each mention. In future work
it might be worth experimenting with multiple entities per mention,
especially in highly ambiguous situations, as our framework seems
to be able to benefit from having more annotations.

7. CONCLUSION
This paper represents a first attempt at incorporating entity link-

ing into entity retrieval. We have presented a novel retrieval ap-
proach that complements term-based retrieval models with entity-
based matches, using automatic means to annotate queries with en-
tities. Our model is based on Random Markov Fields and is pre-
sented as a general framework, in which the entity-based matching
component can be applied to a wide range of entity retrieval mod-
els, including standard language models, term dependence models,
and their fielded variations. We have applied our approach as an ex-
tension to various state-of-the-art entity retrieval models and have
shown significant and consistent improvements over all of them.
The results have also shown that our model especially benefits com-
plex and heterogeneous queries (natural language, type and relation
queries), which are considered difficult queries in the context of en-
tity retrieval. We have further demonstrated the robustness of our
approach against parameter setting and entity linker configuration.

There are several directions for future work. First is to explore
the effectiveness of our model using the entity linking systems specif-
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Figure 5: Effect of changing entity linking threshold (TAGME)
on the performance of FSDM* + ELR model.

ically designed for queries, where a mention may be linked to mul-
tiple entities [12, 22]. Additional avenues for future work include
applying our model to other retrieval problems and considering dif-
ferent flavors of semantic annotations, e.g., entity types.
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